- Research Article
- Open access
- Published:
MAP-Based Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and -Norm Minimization
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 024717 (2006)
Abstract
We address the problem of underdetermined BSS. While most previous approaches are designed for instantaneous mixtures, we propose a time-frequency-domain algorithm for convolutive mixtures. We adopt a two-step method based on a general maximum a posteriori (MAP) approach. In the first step, we estimate the mixing matrix based on hierarchical clustering, assuming that the source signals are sufficiently sparse. The algorithm works directly on the complex-valued data in the time-frequency domain and shows better convergence than algorithms based on self-organizing maps. The assumption of Laplacian priors for the source signals in the second step leads to an algorithm for estimating the source signals. It involves the-norm minimization of complex numbers because of the use of the time-frequency-domain approach. We compare a combinatorial approach initially designed for real numbers with a second-order cone programming (SOCP) approach designed for complex numbers. We found that although the former approach is not theoretically justified for complex numbers, its results are comparable to, or even better than, the SOCP solution. The advantage is a lower computational cost for problems with low input/output dimensions.
References
Winter S, Sawada H, Makino S: Geometrical interpretation of the PCA subspace approach for overdetermined blind source separation. EURASIP Journal on Applied Signal Processing 2006, 2006: 11 pages. special issue: Advances in Multimicrophone Speech Processing
Matsuoka K: Independent component analysis and its applications to sound signal separation. Proceedings of the 8th International Workshop on Acoustic Echo and Noise Control (IWAENC '03), September 2003, Kyoto, Japan 15–18.
Sawada H, Mukai R, Araki S, Makino S: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Transactions on Speech and Audio Processing 2004,12(5):530-538. 10.1109/TSA.2004.832994
Araki S, Makino S, Blin A, Mukai R, Sawada H: Underdetermined blind separation for speech in real environments with sparseness and ICA. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '04), May 2004, Montreal, Quebec, Canada 3: 881–884.
Blin A, Araki S, Makino S: Underdetermined blind separation of convolutive mixtures of speech using time-frequency mask and mixing matrix estimation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2005,E88-A(7):1693-1700. 10.1093/ietfec/e88-a.7.1693
Bofill P, Zibulevsky M: Blind separation of more sources than mixtures using sparsity of their short-time Fourier transform. Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA '00), June 2000, Helsinki, Finland 87–92.
Rickard S, Yilmaz Ö: On the approximate W-disjoint orthogonality of speech. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '02), May 2002, Orlando, Fla, USA 1: 529–532.
Theis FJ: Mathematics in independent component analysis, Ph.D. thesis. University of Regensburg, Regensburg, Germany; 2002.
Vielva L, Santamaria I, Pantaleon C, Ibanez J, Erdogmus D: Estimation of the mixing matrix for underdetermined blind source separation using spectral estimation techniques. Proceedings of 11th European Signal Processing Conference (EUSIPCO '02), September 2002, Toulouse, France 1: 557–560.
Waheed K, Salem FM: Algebraic overcomplete independent component analysis. Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA '03), April 2003, Nara, Japan 1077–1082.
Yilmaz Ö, Rickard S: Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing 2004,52(7):1830-1847. 10.1109/TSP.2004.828896
Bofill P: Underdetermined blind separation of delayed sound sources in the frequency domain. Neurocomputing 2003,55(3-4):627-641. 10.1016/S0925-2312(02)00631-8
Winter S, Sawada H, Araki S, Makino S: Overcomplete BSS for convolutive mixtures based on hierarchical clustering. Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA '04), September 2004, Granada, Spain 652–660.
Winter S, Sawada H, Makino S: On real and complex valued L1-norm minimization for overcomplete blind source separation. Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA '05), October 2005, New Paltz, NY, USA 86–89.
Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics. Springer, New York, NY, USA; 2002.
Sturm JF: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 1999,11(1):625-653. special issue on Interior Point Methods 10.1080/10556789908805766
Vielva L, Erdogmus D, Principe JC: Underdetermined blind source separation using a probabilistic source sparsity model. Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA '01), December 2001, San Diego, Calif, USA 675–679.
Kellermann W, Buchner H: Wideband algorithms versus narrowband algorithms for adaptive filtering in the DFT domain. Proceedings of the Asilomar Conference on Signals, Systems and Computers, November 2003, Pacific Grove, Calif, USA 2: 1278–1282.
Sawada H, Araki S, Mukai R, Makino S: Blind extraction of a dominant source signal from mixtures of many sources. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 3: 61–64.
Murtagh F: Comments on 'Parallel algorithms for hierarchical clustering and cluster validity'. IEEE Transactions on Pattern Analysis and Machine Intelligence 1992,14(10):1056-1057. 10.1109/34.159908
Lewicki MS, Sejnowski TJ: Learning overcomplete representations. Neural Computation 2000,12(2):337-365. 10.1162/089976600300015826
Takigawa I, Kudo M, Toyama J:Performance analysis of minimum -norm solutions for underdetermined source separation. IEEE Transactions on Signal Processing 2004,52(3):582-591. 10.1109/TSP.2003.822284
Malioutov DM, Çetin M, Willsky AS: Optimal sparse representations in general overcomplete bases. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '04), May 2004, Montreal, Quebec, Canada 2: 793–796.
Pruessner A, Bussieck MR, Dirkse SP, Meeraus A: Conic programming in GAMS. INFORMS Annual Meeting, October 2003, Atlanta, Ga, USA 19–22.
Araki S, Sawada H, Mukai R, Makino S: A novel blind source separation method with observation vector clustering. Proceedings of International Workshop on Acoustic Echo and Noise Control (IWAENC '05), September 2005, Eindhoven, The Netherlands 117–120.
Févotte C, Gribonval R, Vincent E: BSS_EVAL toolbox user guide—Revision 2.0. In Tech. Rep. 1706. IRISA, Rennes, France; April 2005.
Vincent E, Gribonval R, Févotte C: Performance measurement in blind audio source separation. IEEE Transactions on Audio, Speech and Language Processing 2006,14(4):1462-1469.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Winter, S., Kellermann, W., Sawada, H. et al. MAP-Based Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and -Norm Minimization. EURASIP J. Adv. Signal Process. 2007, 024717 (2006). https://doi.org/10.1155/2007/24717
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/24717