多目标的卫星仪器宽动态非线性定标
Wide dynamic nonlinear radiometric calibration of optical satellite sensors using multiple stable earth targets
- 2017年21卷第6期 页码:892-906
纸质出版日期: 2017-9-15 ,
录用日期: 2017-5-29
DOI: 10.11834/jrs.20176351
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2017-9-15 ,
录用日期: 2017-5-29
扫 描 看 全 文
王玲, 胡秀清, 陈林. 2017. 多目标的卫星仪器宽动态非线性定标. 遥感学报, 21(6): 892–906
Wang L, Hu X Q and Chen L. 2017. Wide dynamic nonlinear radiometric calibration of optical satellite sensors using multiple stable earth targets. Journal of Remote Sensing, 21(6): 892–906
传统的场地辐射定标方法由于定标样本少,难以覆盖遥感器动态范围,且不能发现仪器辐射响应是否存在非线性特性。针对这一问题,本文提出了基于多种亮暗等级的地球稳定目标(盐湖、沙漠和海洋)的卫星传感器宽动态非线性辐射定标方法。该方法以MODIS和NCEP数据产品作为稳定目标的地表特性、大气状况的先验知识库,利用大气辐射传输模型计算的多个稳定目标的大气层顶辐射值为定标基准,以二次多项式为定标方程,实现宽动态的非线性辐射定标,并以Aqua/MODIS观测值作为参考,对定标基准的精度进行评估。结果显示,对于反射太阳波段,辐射传输模型的计算值与MODIS观测值间的偏差均值在2%以内。最后,以气象卫星遥感器MERSI为例,基于2014年在稳定目标上空获取的大量定标样本,对其反射太阳通道的辐射响应特性进行研究,从而确定辐射定标方案和辐射定标方程的系数,然后采用敦煌试验场的同步实测数据对定标结果进行验证。结果表明,除了940 nm的水汽强吸收通道,其他通道的定标精度基本在5%以内。
In order to obtain quantitative information from satellite measurements
the satellite radiometer must first be calibrated. Calibration is a critical step to ensure data quality and to meet the needs of quantitative remote sensing in a broad range of scientific applications. One of the least expensive and increasingly popular methods of on-orbit calibration has been the use of pseudo invariant calibration sites. However
most of the researchers are tend to use one of these sites to monitor the multi-temporal stability of satellite sensors using time series analysis. A wide dynamic absolute calibration method by using multiple stable earth targets is presented here. This method relies on calculated Top-Of-Atmosphere (TOA) radiances over bright desert and salt lake sites as well as dark ocean targets. These simulated radiances represent the “reference” and are done using the 6S radiative transfer code with MODerate-resolution Imaging Spectroradiometer (MODIS) products and National Centers for Environmental Prediction (NCEP) reanalysis data for surface reflectance
aerosol optical depth
ozone amount and water vapor load estimation. When associating the simulated radiances with the sensor observed Digital Number (DN) using quadratic polynomial
the calibration coefficients can be obtained. The accuracy of the calibration results are determined by the accuracy of the “reference”
and this “reference” accuracy are assessed through using MODIS L1B data
which is characterized by high calibration accuracy (<2%)
during one year period. Then
this method are applied to Medium-Resolution Imager (MERSI) onboard the second Chinese Polar Orbital Meteorological Satellite of FY-3A and FY-3C to study the radiometric response characteristics
so that the best calibration strategy can be determined. Finally
the determined calibration strategy is applied to FY-3A/MERSI and FY-3C/MERSI respectively
and the calculated calibration coefficients are validated based on the field observation data obtained at China Dunhuang Calibration Test Site on August 16
2014. With the field observation data and 6S radiative transfer code
the TOA reflectance for MERSI solar bands are simulated and are used to validate the TOA reflectance calculated with the calibration coefficients obtained through the calibration method using Multiple Stable earth Targets (MST) proposed here. The comparison results demonstrate that calibration “reference” has high accuracy with relative bias between simulation and observation less than ±2%. Study of radiometric response characteristics FY-3A/MERSI and FY-3C/MERSI shows that radiometric response of FY-3A/MERSI is linear
while FY-3C/MERSI is non-linear. Hence
during their calibration processes
linear calibration method using MST is applied to FY-3A/MERSI
and non-linear calibration for FY-3C/MERSI. Validation results show that the relative differences of TOA reflectance between the one obtained from the calibration method using MST and the one obtained from 6S simulation using In-situ measurements are within ±%5 for most solar bands of MERSI. Compared with the traditional two-point calibration method
calibration trough using MST has the following advantages: (1) covering a wider dynamic range of satellite sensors
hence be good at characterize their radiometric response characteristic
(2) be helpful to reduce the calibration uncertainty with a large amount of calibration samples
and (3) can achieve efficient
real-time absolute radiation calibration for satellite sensors.
辐射定标稳定目标MERSIMODIS非线性
radiometric calibrationstable targetsMERSIMODISnonlinear
Chander G, Xiong X X, Choi T and Angal A. 2010. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sensing of Environment, 114(4): 925–939
Chen L, Xu N, Li Y, Wu R H, Xu X Q and Zhang P. 2014. FY-3C/MERSI pre-launch calibration for reflective solar bands//Proceedings of SPIE Earth Observing Missions and Sensors: Development, Implementation, and Characterization III. Beijing, China: SPIE, 9264: 92640Z [DOI: 10.1117/12.2070397]
Cosnefroy H, Leroy M and Briottet X. 1996. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sensing of Environment, 58(1): 101–114
Dinguirard M and Slater P N. 1999. Calibration of space-multispectral imaging sensors: a review. Remote Sensing of Environment, 68(3): 194–205
高彩霞, 姜小光, 马灵玲, 霍红元. 2013. 传感器交叉辐射定标综述. 干旱区地理, 36(1): 139–146
Gao C X, Jiang X G, Ma L L and Huo H Y. 2013. Review of radiometric cross-calibration. Arid Land Geography, 36(1): 139–146 (
巩慧, 田国良, 余涛, 顾行发, 高海亮, 李小英. 2010. CBERS02B卫星CCD相机在轨辐射定标与真实性检验. 遥感学报, 14(1): 1–12
Gong H, Tian G L, Yu T, Gu X F, Gao H L and Li X Y. 2010. Vicarious radiometric calibration and validation of CBERS02B CCD data. Journal of Remote Sensing, 14(1): 1–12 (
Govaerts Y M, Clerici M, Clerbaux N. 2004. Operational calibration of the Meteosat radiometer VIS band. IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1900–1914
顾行发, 田国良, 余涛, 李小英, 高海亮, 谢勇. 2013. 航天光学遥感器辐射定标原理与方法[M]. 北京: 科学出版社: 6–11
Gu X F, Tian G L, Yu T, Li X Y, Gao H L and Xie Y. 2013. Radiation Calibration of the Space-Based Optical Satellite Sensor: Principle and Method. Beijing: Science Press: 6–11
韩启金, 傅俏燕, 潘志强, 王爱春, 张学文. 2013. 资源三号卫星靶标法绝对辐射定标与验证分析. 红外与激光工程, 42(S1): 167–173
Han Q J, Fu Q Y, Pan Z Q, Wang A C and Zhang X W. 2013. Absolute radiometric calibration and validation analysis of ZY-3 using artificial targets. Infrared and Laser Engineering, 42(S1): 167–173 (
韩启金, 张学文, 乔志远, 杨磊, 潘志强, 刘李. 2015. 高分一号卫星PMS相机多场地宽动态辐射定标. 红外与激光工程, 44(1): 127–133
Han Q J, Zhang X W, Qiao Z Y, Yang L, Pan Z Q and Liu L. 2015. Wide dynamic radiometric calibration of GF-1 PMS sensors using multi-test sites. Infrared and Laser Engineering, 44(1): 127–133 (
Helder D, Thome K J, Mishra N, Chander G, Xiong X X, Angal A and Choi T. 2013. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1360–1369
胡秀清, 刘京晶, 邱康睦, 范天锡, 张玉香, 戎志国, 张立军. 2009. 神舟3号飞船中分辨率成像光谱仪场地替代定标新方法研究. 光谱学与光谱分析, 29(5): 1153–1159
Hu X Q, Liu J J, Qiu K M, Fan T X, Zhang Y X, Rong Z G and Zhang L J. 2009. New method study of sites vicarious calibration for SZ-3/CMODIS. Spectroscopy and Spectral Analysis, 29(5): 1153–1159 (
Hu X Q, Sun L, Liu J J, Ding L, Wang X H, Li Y, Zhang Y, Xu N and Chen L. 2012. Calibration for the solar reflective bands of medium resolution spectral imager onboard FY-3A. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4915–4928
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R and Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–471
Kim W, Cao C Y and Liang S L. 2014. Assessment of radiometric degradation of FY-3A MERSI reflective solar bands using TOA Reflectance of pseudoinvariant calibration sites. IEEE Geoscience and Remote Sensing Letters, 11(4): 793–797
Masonis S J and Warren S G. 2001. Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctic and Greenland snow. International Journal of Remote Sensing, 22(8): 1495–1520
Mishra N, Helder D, Angal A, Choi J and Xiong X X. 2014. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site. Remote Sensing, 6(2): 1327–1346
Smith D L, Mutlow C T and Rao C R N. 2002. Calibration monitoring of the visible and near-infrared channels of the Along-Track Scanning Radiometer-2 by use of stable terrestrial sites. Applied Optics, 41(3): 515–523
孙凌, 胡秀清, 郭茂华, 徐娜. 2013. 风云三号A星中分辨率光谱成像仪反射太阳波段的多场地定标跟踪. 气象科技进展, 3(4): 84–96
Sun L, Hu X Q, Guo M H and Xu N. 2013. Multisite calibration tracking for FY-3A MERSI solar bands. Advances in Meteorological Science and Technology, 3(4): 84–96 (
唐军武, 顾行发, 牛生丽, 马超飞, 闵祥军. 2005. 基于水体目标的CBERS-02卫星CCD相机与MODIS的交叉辐射定标. 中国科学E辑-信息科学, 35(SI): 61–71
Tang J W, Gu X F, Niu S L, Ma C F and Min X J. 2005. Water target based cross-calibration of CBERS-02 CCD camera with MODIS data. Science in China Series E Engineering and Materials Science, 35(SI): 61–71 (
Teillet P M, Barsi J A, Chander G and Thome K J. 2007. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments//Proceedings of SPIE 6677, Earth Observing System XII. San Diego, CA, USA: SPIE [DOI: 10.1117/12.733156]
田庆久, 郑兰芬, 童庆禧. 1998. SPOT地面场定标与星上定标结果的比较分析. 遥感学报, 2(1): 13–18
Tian Q J, Zheng L F and Tong Q X. 1998. Comparison and analysis for in-flight calibration of SPOTBased on methods of test site and on-boarding calibration. Journal of Remote Sensing, 2(1): 13–18 (
Vermote E F, Tanré D, Deuzé J L, Herman M and Morcette J J. 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 675–686
王玲, 胡秀清, 陈林. 2015. 基于多种亮度稳定目标的FY-3C/中分辨率光谱成像仪的反射太阳波段辐射定标. 光学 精密工程, 23(7): 1911–1920
Wang L, Hu X Q and Chen L. 2015. FY-3C/MERSI calibration for solar band using multi-reflectance stable targets. Optics and Precision Engineering, 23(7): 1911–1920 (
Xiong X X, Sun J Q, Barnes W, Salomonson V, Esposito J, Erives H and Guenther B. 2007. Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands. IEEE Transactions on Geoscience and Remote Sensing, 45(4): 879–889
Xu N, Chen L, Wu R H, Hu X Q, Sun L and Zhang P. 2014. In-flight intercalibration of FY-3C visible channels with AQUA MODIS. Proceedings of SPIE Earth Observing Missions and Sensors: Development, Implementation, and Characterization III. Beijing, China: SPIE, 9264: 926408 [DOI: 10.1117/12.2071185]
张鹏, 杨虎, 邱红, 马刚, 杨忠东, 卢乃锰, 杨军. 2012. 风云三号卫星的定量遥感应用能力. 气象科技进展, 2(4): 6–11
Zhang P, Yang H, Qiu H, Ma G, Yang Z D, Lu N M and Yang J. 2012. Quantitative remote sensing from the current Fengyun 3 satellites. Advances in Meteorological Science and Technology, 2(4): 6–11 (
相关作者
相关机构