Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Measurement of fluid viscosity at microliter volumes using quartz impedance analysis

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this work was to measure viscosity of fluids at low microliter volumes by means of quartz crystal impedance analysis. To achieve this, a novel setup was designed that allowed for measurement of viscosity at volumes of 8 to 10 μL. The technique was based on the principle of electromechanical coupling of piezoelectric quartz crystals. The arrangement was simple with measurement times ranging from 2 to 3 minutes. The crystal setup assembly did not impose any unwanted initial stress on the unloaded quartz crystal. Quartz crystals of 5- and 10-MHz fundamental frequency were calibrated with glycerol-water mixtures of known density and viscosity prior to viscosity measurements. True frequency shifts, for the purpose of this work, were determined followed by viscosity measurement of aqueous solutions of sucrose, urea, PEG-400, glucose, and ethylene glycol at 25°C±0.5°C. The measured viscosities were found to be reproducible and consistent with the values reported in the literature. Minor inconsistencies in the measured resistance and frequency shifts did not affect the results significantly, and were found to be experimental in origin rather than due to electrode surface roughness. Besides, as expected for a viscoelastic fluid, PEG 8000 solutions, the calculated viscosities were found to be less than the reported values due to frequency dependence of storage and loss modulus components of complex viscosity. From the results, it can be concluded that the present setup can provide accurate assessment of viscosity of Newtonian fluids and also shows potential for analyzing non-Newtonian fluids at low microliter volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macosko CW. Rheology: Principles, Measurement and Applications. New York, NY: Wiley-VCH; 1994.

    Google Scholar 

  2. Larson RG. The Structure and Rheology of Complex Fluids. New York, NY: Oxford University Press; 1999.

    Google Scholar 

  3. Kudryashov ED, Hunt NT, Arikainen EO, Buckin VA. Monitoring of acidified milk gel formation by ultrasonic shear wave measurements. High-frequency viscoelastic moduli of milk and acidified milk gel.J Dairy Sci. 2001;84:375–388.

    Article  CAS  Google Scholar 

  4. Mason WP. Measurement of the viscosity and shear elasticity of liquids by means of a torsionally vibrating crystal.Trans Am Soc Mech Eng. 1947;68:359–370.

    CAS  Google Scholar 

  5. Mason WP, Baker WO, McSkimin HJ, Heiss JH. Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies.Phys Rev. 1949;75:936–946.

    Article  CAS  Google Scholar 

  6. Hoummady M, Bastien F. Acoustic wave viscometer.Rev Sci Instrum. 1991;62:1999–2003.

    Article  CAS  Google Scholar 

  7. Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution.Electrochim Acta. 1985;30:1295–1300.

    Article  CAS  Google Scholar 

  8. Kanazawa KK, Gordon JG II. The oscillation frequency of a quartz resonator in contact with liquid.Anal Chim Acta 1985;175:99–105.

    Article  CAS  Google Scholar 

  9. Kauzlarich JJ, Ross RA, Abdallah DS. A new electronic viscometer based on Rayleigh wave mechanics.Tribotest. 1998;5:135–143.

    Article  CAS  Google Scholar 

  10. Buckin V, Kudryashov E. Ultrasonic shear wave rheology of weak particle gels.Adv Colloid Interface Sci. 2001;89–90:401–422.

    Article  Google Scholar 

  11. Morray B, Li S, Hossenlopp J, Cernosek R, Josse F. PMMA polymer film characterization using thickness-shear mode (TSM) quartz resonator. P. IEEE Internat. Freq. Control Symp. PDA Exhibit. New Orleans, LA: Institute of Electrical and Electronics Engineers, New York, NY; 2002:294–300.

    Google Scholar 

  12. Calvo EJ, Etchenique R, Bartlett PN, Singhal K, Santamaria C. Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films.Faraday Discuss. 1997;107:141–157.

    Article  CAS  Google Scholar 

  13. Bandey HL, Hillman AR, Brown MJ, Martin SJ. Viscoelastic characterization of electroactive polymer films at the electrode/solution interface.Faraday Discuss. 1997;107:105–121.

    Article  CAS  Google Scholar 

  14. Ash DC, Joyce MJ, Barnes C, Booth CJ, Jefferies AC. Viscosity measurement of industrial oils using the droplet quartz crystal microbalance.Meas Sci Technol. 2003;14:1955–1962.

    Article  CAS  Google Scholar 

  15. Buttry DA, Ward MD. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance.Chem Rev. 1992;92:1355–1379.

    Article  CAS  Google Scholar 

  16. Martin SJ, Bandey HL, Cernosek RW, Hillman AR, Brown MJ. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.Anal Chem. 2000;72:141–149.

    Article  CAS  Google Scholar 

  17. Sauerbrey G. The use of quartz oscillators for weighing thin layers and for microweighing.Z Phys. 1959;155:206–222.

    Article  CAS  Google Scholar 

  18. Ferrante F, Kipling AL, Thompson M. Molecular slip at the solid-liquid interface of an acoustic-wave sensor.J Appl Physiol. 1994;76:3448–3462.

    Article  CAS  Google Scholar 

  19. Thiesen LA, Martin SJ, Hillman AR. A model for the quartz crystal microbalance crystal response to wetting characteristics of corrugated surfaces.Anal Chem. 2004;76:796–804.

    Article  CAS  Google Scholar 

  20. Nwankwo E, Durning CJ. Impedance analysis of thickness-shear mode quartz crystal resonators in contact with linear viscoelastic media.Rev Sci Instrum. 1998;69:2375–2384.

    Article  CAS  Google Scholar 

  21. Reed CE, Kanazawa KK, Kaufman JH. Physical description of a viscoelastically loaded AT-cut quartz resonator.J Appl Physiol. 1990;68:1993–2001.

    Article  CAS  Google Scholar 

  22. Lucklum R, Hauptmann P. Determination of polymer shear modulus with quartz crystal resonators.Faraday Discuss. 1997;107:123–140.

    Article  CAS  Google Scholar 

  23. Bandey HL, Martin SJ, Cernosek RW, Hillman AR. Modeling the responses of thickness-shear mode resonators under various loading conditions.Anal Chem. 1999;71:2205–2214.

    Article  CAS  Google Scholar 

  24. Martin SJ, Frye GC, Ricco AJ, Senturia SD. Effect of surface roughness on the response of thickness-shear mode resonators in liquids.Anal Chem. 1993;65:2910–2922.

    Article  CAS  Google Scholar 

  25. Behrends R, Kaatze U. A high frequency shear wave impedance spectrometer for low viscosity liquids.Meas Sci Technol. 2001;12:519–524.

    Article  CAS  Google Scholar 

  26. Arnau A, Jimenez Y, Sogorb T. Thickness-shear mode quartz crystal resonators in viscoelastic fluid media.J Appl Physiol. 2000;88:4498–4506.

    Article  CAS  Google Scholar 

  27. Reddy SM, Jones JP, John Lewis T. Use of combined shear and pressure acoustic waves to study interfacial and bulk viscoelastic effects in aqueous polymeric gels and the influence of electrode potentials.Faraday Discuss. 1997;107:177–196.

    Article  CAS  Google Scholar 

  28. Martin SJ, Granstaff VE, Frye GC. Characterization of quartz crystal microbalance with simultaneous mass and liquid loading.Anal Chem. 1991;63:2272–2281.

    Article  CAS  Google Scholar 

  29. Muramatsu H, Tamiya E, Karube I. Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties.Anal Chem. 1988;60:2142–2146.

    Article  CAS  Google Scholar 

  30. Kipling AL, Thompson M. Network analysis method applied to liquid-phase acoustic wave sensors.Anal Chem. 1990;62:1514–1519.

    Article  CAS  Google Scholar 

  31. National Research Council. International Critical Tables of Numerical Data, Physics, Chemistry and Technology. New York, NY: McGraw Hill Book Company; 1926–1930.

    Google Scholar 

  32. Sheely ML. Glycerol viscosity tables.Ind Eng Chem. 1932;24:1060–1064.

    Article  CAS  Google Scholar 

  33. Bund A, Schwitzgebel G. Viscoelastic properties of low-viscosity liquids studied with thickness-shear mode resonators.Anal Chem. 1998;70:2584–2588.

    Article  CAS  Google Scholar 

  34. Kurosawa S, Tawara E, Kamo N, Kobatake Y. Oscillating frequency of piezoelectric quartz crystal in solutions.Anal Chim Acta. 1990;230:41–49.

    Article  CAS  Google Scholar 

  35. James CJ, Mulcahy DE, Steel BJ. Viscometer calibration standards: viscosities of water between 0 and 60.degree.C and of selected aqueous sucrose solutions at 25.degree.C from measurements with a flared capillary viscometer.J Phys D Appl Physiol. 1984;17:225–230.

    Article  CAS  Google Scholar 

  36. Barlow AJ, Lamb J. The visco-elastic behaviour of lubricating oils under cyclic shearing stress.P Roy Soc Lond A Mat. 1959;253:52–69.

    Article  Google Scholar 

  37. Cernosek RW, Martin SJ, Hillman AR, Bandey HL. Comparison of lumped-element and transmission-line model for thickness-shear-mode quartz resonator sensors.IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45:1399–1407.

    Article  Google Scholar 

  38. Stockbridge CD. Resonance frequency versus mass added to quartz crystals. In: Behrndt KH, ed. Vacuum Microbalance Techniques. New York, NY: Plenum; 1966:193–205.

    Google Scholar 

  39. Gonzalez-Tello P, Camacho F, Blazquez G. Density and viscosity of concentrated aqueous solutions of polyethylene glycol.J Chem Eng Data. 1994;39:611–614.

    Article  CAS  Google Scholar 

  40. Barlow AJ, Subramanian S. Experimental technique for the determination of the visco-elastic properties of liquids in the frequency range 5–75 Mc.Brit J Appl Phys. 1966;17:1201–1214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra S. Kalonia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saluja, A., Kalonia, D.S. Measurement of fluid viscosity at microliter volumes using quartz impedance analysis. AAPS PharmSciTech 5, 47 (2004). https://doi.org/10.1208/pt050347

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt050347

Keywords