Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Induction of Death Receptor CD95 and Co-stimulatory Molecules CD80 and CD86 by Meningococcal Capsular Polysaccharide-Loaded Vaccine Nanoparticles

  • Research Article
  • Theme: Nanoparticles in Vaccine Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis, and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and protective vaccines. We formulated a novel nanovaccine containing meningococcal CPS as an antigen encapsulated in albumin-based nanoparticles (NPs) that does not require chemical conjugation to a protein carrier. These nanoparticles are taken up by antigen-presenting cells and act as antigen depot by slowly releasing the antigen. In this study, we determined the ability of CPS-loaded vaccine nanoparticles to induce co-stimulatory molecules, namely CD80, CD86, and CD95 that impact effective antigen presentation. Co-stimulatory molecule gene induction and surface expression on macrophages and dendritic cells pulsed with meningococcal CPS-loaded nanoparticles were investigated using gene array and flow cytometry methods. Meningococcal CPS-loaded NP significantly induced the surface protein expression of CD80 and CD86, markers of dendritic cell maturation, in human THP-1 macrophages and in murine dendritic cells DC2.4 in a dose-dependent manner. The massive upregulation was also observed at the gene expression. However, high dose of CPS-loaded NP, but not empty NP, induced the expression of death receptor CD95 (Fas) leading to reduced TNF-α release and reduction in cell viability. The data suggest that high expression of CD95 may lead to death of antigen-presenting cells and consequently suboptimal immune responses to vaccine. The CPS-loaded NP induces the expression of co-stimulatory molecules and acts as antigen depot and can spare antigen dose, highly desirable criteria for vaccine formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Bjerre A, Øvstebø R, Kierulf P, Halvorsen S, Brandtzæg P. Fulminant meningococcal septicemia: dissociation between plasma thrombopoietin levels and platelet counts. Clin Infect Dis. 2000;30(4):643–7.

    Article  CAS  PubMed  Google Scholar 

  2. Zughaier SM. Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol. 2011;89(3):469–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007;369(9580):2196–210.

    Article  PubMed  Google Scholar 

  4. Chiavaroli C, Moore A. An hypothesis to link the opposing immunological effects induced by the bacterial lysate OM-89 in urinary tract infection and rheumatoid arthritis. BioDrugs Clin Immunother Biopharm Gene Ther. 2006;20(3):141–9.

    CAS  Google Scholar 

  5. Barin JG, Baldeviano GC, Talor MV, Wu L, Ong S, Quader F, et al. Macrophages participate in IL-17-mediated inflammation. Eur J Immunol. 2012;42(3):726–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Peng H, Huang Y, Rose J, Erichsen D, Herek S, Fujii N, et al. Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J Neurosci Res. 2004;76(1):35–50.

    Article  CAS  PubMed  Google Scholar 

  7. Makwana N, Riordan FAI. Bacterial meningitis: the impact of vaccination. CNS Drugs. 2007;21(5):355–66.

    Article  PubMed  Google Scholar 

  8. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006;124(4):849–63.

    Article  CAS  PubMed  Google Scholar 

  9. Ubale RV, D’Souza MJ, Infield DT, McCarty NA, Zughaier SM. Formulation of meningococcal capsular polysaccharide vaccine-loaded microparticles with robust innate immune recognition. J Microencapsul. 2013;30(1):28–41.

    Article  CAS  PubMed  Google Scholar 

  10. Bejugam NK, Uddin AN, Gayakwad SG, D’Souza MJ. Formulation and evaluation of albumin microspheres and its enteric coating using a spray-dryer. J Microencapsul. 2008;25(8):577–83.

    Article  CAS  PubMed  Google Scholar 

  11. Lai YH, D’Souza MJ. Formulation and evaluation of an oral melanoma vaccine. J Microencapsul. 2007;24(3):235–52.

    Article  CAS  PubMed  Google Scholar 

  12. Yeboah KG, D’souza MJ. Evaluation of albumin microspheres as oral delivery system for Mycobacterium tuberculosis vaccines. J Microencapsul. 2009;26(2):166–79.

    Article  CAS  PubMed  Google Scholar 

  13. Uddin AN, Bejugam NK, Gayakwad SG, Akther P, D’Souza MJ. Oral delivery of gastro-resistant microencapsulated typhoid vaccine. J Drug Target. 2009;17(7):553–60.

    Article  CAS  PubMed  Google Scholar 

  14. Monari C, Paganelli F, Bistoni F, Kozel TR, Vecchiarelli A. Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms. Cell Microbiol. 2008;10(10):2129–37.

    Article  CAS  PubMed  Google Scholar 

  15. Bossaller L, Chiang P-I, Schmidt-Lauber C, Ganesan S, Kaiser WJ, Rathinam VAK, et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol Baltim Md. 2012;189(12):5508–12.

    CAS  Google Scholar 

  16. Borowski AB, Boesteanu AC, Mueller YM, Carafides C, Topham DJ, Altman JD, et al. Memory CD8+ T cells require CD28 costimulation. J Immunol Baltim Md. 2007;179(10):6494–503.

    CAS  Google Scholar 

  17. Zughaier S, Agrawal S, Stephens DS, Pulendran B. Hexa-acylation and KDO(2)-glycosylation determine the specific immunostimulatory activity of Neisseria meningitidis lipid A for human monocyte derived dendritic cells. Vaccine. 2006;24(9):1291–7.

    Article  CAS  PubMed  Google Scholar 

  18. Fang M, Sigal LJ. Direct CD28 costimulation is required for CD8+ T cell-mediated resistance to an acute viral disease in a natural host. J Immunol Baltim Md. 2006;177(11):8027–36.

    CAS  Google Scholar 

  19. Dolfi DV, Katsikis PD. CD28 and CD27 costimulation of CD8+ T cells: a story of survival. Adv Exp Med Biol. 2007;590:149–70.

    Article  PubMed  Google Scholar 

  20. McAdam AJ, Schweitzer AN, Sharpe AH. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol Rev. 1998;165:231–47.

    Article  CAS  PubMed  Google Scholar 

  21. Pericolini E, Cenci E, Monari C, De Jesus M, Bistoni F, Casadevall A, et al. Cryptococcus neoformans capsular polysaccharide component galactoxylomannan induces apoptosis of human T-cells through activation of caspase-8. Cell Microbiol. 2006;8(2):267–75.

    Article  CAS  PubMed  Google Scholar 

  22. Villena SN, Pinheiro RO, Pinheiro CS, Nunes MP, Takiya CM, DosReis GA, et al. Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell Microbiol. 2008;10(6):1274–85.

    Article  CAS  PubMed  Google Scholar 

  23. Zuñiga E, Motran CC, Montes CL, Yagita H, Gruppi A. Trypanosoma cruzi infection selectively renders parasite-specific IgG+ B lymphocytes susceptible to Fas/Fas ligand-mediated fratricide. J Immunol Baltim Md. 2002;168(8):3965–73.

    Google Scholar 

  24. Vasconcelos JR, Bruña–Romero O, Araújo AF, Dominguez MR, Ersching J, de Alencar BCG, et al. Pathogen-induced proapoptotic phenotype and high CD95 (Fas) expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral vaccine. PLoS Pathog. 2012;8(5):e1002699.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hashimoto M, Nakajima-Shimada J, Ishidoh K, Aoki T. Gene expression profiles in response to Fas stimulation in Trypanosoma cruzi-infected host cells. Int J Parasitol. 2005;35(14):1587–94.

    Article  CAS  PubMed  Google Scholar 

  26. Guillermo LVC, Silva EM, Ribeiro-Gomes FL, De Meis J, Pereira WF, Yagita H, et al. The Fas death pathway controls coordinated expansions of type 1 CD8 and type 2 CD4 T cells in Trypanosoma cruzi infection. J Leukoc Biol. 2007;81(4):942–51.

    Article  CAS  PubMed  Google Scholar 

  27. Shastri PN, Kim M-C, Quan F-S, D’Souza MJ, Kang S-M. Immunogenicity and protection of oral influenza vaccines formulated into microparticles. J Pharm Sci. 2012;101(10):3623–35.

    Article  CAS  PubMed  Google Scholar 

  28. Zughaier SM, Tzeng Y-L, Zimmer SM, Datta A, Carlson RW, Stephens DS. Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway. Infect Immun. 2004;72(1):371–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rhule A, Rase B, Smith JR, Shepherd DM. Toll-like receptor ligand-induced activation of murine DC2.4 cells is attenuated by Panax notoginseng. J Ethnopharmacol. 2008;116(1):179–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. He T, Tang C, Xu S, Moyana T, Xiang J. Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cell Mol Immunol. 2007;4(2):105–11.

    CAS  PubMed  Google Scholar 

  31. Tiruppathi C, Finnegan A, Malik AB. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc Natl Acad Sci U S A. 1996;93(1):250–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Frei E. Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol Metab Syndr. 2011;3(1):11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Antohe F, Dobrila L, Heltianu C, Simionescu N, Simionescu M. Albumin-binding proteins function in the receptor-mediated binding and transcytosis of albumin across cultured endothelial cells. Eur J Cell Biol. 1993;60(2):268–75.

    CAS  PubMed  Google Scholar 

  34. Saito T, Yokosuka T, Hashimoto-Tane A. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 2010;584(24):4865–71.

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Fuse S, Tsai C-Y, Rommereim LM, Zhang W, Usherwood EJ. Differential requirements for CD80/86-CD28 costimulation in primary and memory CD4 T cell responses to vaccinia virus. Cell Immunol. 2011;266(2):130–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fuse S, Zhang W, Usherwood EJ. Control of memory CD8+ T cell differentiation by CD80/CD86-CD28 costimulation and restoration by IL-2 during the recall response. J Immunol Baltim Md. 2008;180(2):1148–57.

    CAS  Google Scholar 

  38. Boesteanu AC, Katsikis PD. Memory T cells need CD28 costimulation to remember. Semin Immunol. 2009;21(2):69–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Oyaizu N, Kayagaki N, Yagita H, Pahwa S, Ikawa Y. Requirement of cell-cell contact in the induction of Jurkat T cell apoptosis: the membrane-anchored but not soluble form of FasL can trigger anti-CD3-induced apoptosis in Jurkat T cells. Biochem Biophys Res Commun. 1997;238(2):670–5.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported in part by grants from Emory-Egleston Children’s Research Center and Center for Pediatric Nanomedicine of Emory + Children’s Pediatrics Research Center to S.M.Z. The authors are grateful to Dr. Seshu Gudlavelleti for providing meningococcal vaccine-grade serogroup A capsular polysaccharides.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susu M. Zughaier or Martin J. D’Souza.

Additional information

Guest Editor: Aliasger K. Salem

Ruhi V. Ubale and Rikhav P. Gala have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubale, R.V., Gala, R.P., Zughaier, S.M. et al. Induction of Death Receptor CD95 and Co-stimulatory Molecules CD80 and CD86 by Meningococcal Capsular Polysaccharide-Loaded Vaccine Nanoparticles. AAPS J 16, 986–993 (2014). https://doi.org/10.1208/s12248-014-9635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9635-2

KEY WORDS