Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Open Access
January, 1995 Subdiffusive Fluctuations for Internal Diffusion Limited Aggregation
Gregory F. Lawler
Ann. Probab. 23(1): 71-86 (January, 1995). DOI: 10.1214/aop/1176988377

Abstract

Internal diffusion limited aggregation (internal DLA) is a cluster model in $\mathbb{Z}^d$ where new points are added by starting random walkers at the origin and letting them run until they have found a new point to add to the cluster. It has been shown that the limiting shape of internal DLA clusters is spherical. Here we show that for $d \geq 2$ the fluctuations are subdiffusive; in fact, that they are of order at most $n^{1/3}$, at least up to logarithmic corrections. More precisely, we show that for all sufficiently large $n$ the cluster after $m = \lbrack\omega_dn^d\rbrack$ steps covers all points in the ball of radius $n - n^{1/3}(\ln n)^2$ and is contained in the ball of radius $n + n^{1/3}(\ln n)^4$.

Citation

Download Citation

Gregory F. Lawler. "Subdiffusive Fluctuations for Internal Diffusion Limited Aggregation." Ann. Probab. 23 (1) 71 - 86, January, 1995. https://doi.org/10.1214/aop/1176988377

Information

Published: January, 1995
First available in Project Euclid: 19 April 2007

zbMATH: 0835.60086
MathSciNet: MR1330761
Digital Object Identifier: 10.1214/aop/1176988377

Subjects:
Primary: 60K35
Secondary: 82B24

Keywords: Cluster growth , Interfaces , subdiffusive fluctuations

Rights: Copyright © 1995 Institute of Mathematical Statistics

Vol.23 • No. 1 • January, 1995
Back to Top