Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Changes in Myostatin Signaling in Non-Weight-Losing Cancer Patients

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Myostatin is a negative regulator of skeletal muscle mass. We recently demonstrated that myostatin expression is upregulated in an experimental model of cancer cachexia, suggesting that modulations of this pathway might play a pathogenic role in cancer-related muscle wasting. The present study was designed to investigate whether myostatin signaling is modulated in the muscle of non-weight-losing (nWL) patients with lung and gastric cancer.

Methods

Myostatin signaling was studied in muscle biopsies obtained during surgical procedure from nWL patients affected by gastric (n = 16) or lung (n = 17) cancer. Western blotting was applied to test both the total expression of myostatin and the expression of phosphorylated form of GSK-3beta and Smad2/3.

Results

In patients with gastric cancer, the expression of both myostatin and phosphorylated GSK-3beta (p-GSK3β) were significantly increased. By contrast, in patients with lung cancer, myostatin levels were comparable to controls, whereas the expression of p-GSK3β significantly decreased in patients with disease stage III/IV.

Conclusions

Myostatin signaling is altered in nWL cancer patients. Different tumor types may give rise to different patterns of molecular changes within the muscle, which occur even before cachexia becomes clinically apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90.

    Article  PubMed  CAS  Google Scholar 

  2. Tsuchida K, Arai KY, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H. Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. J Biol Chem. 2000;275:40788–96.

    Article  PubMed  CAS  Google Scholar 

  3. Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA. 2001;98:9306–11.

    Article  PubMed  CAS  Google Scholar 

  4. Tsuchida K, Nakatani M, Uezemi A, Murakami T, Cui X. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J. 2008;55:11–21.

    Article  PubMed  CAS  Google Scholar 

  5. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol. 2003;23:7230–42.

    Article  PubMed  CAS  Google Scholar 

  6. Yang W, Chen Y, Zhang Y, Wang X, Yang N, Zhu D. Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. Cancer Res. 2006;66:1320–6.

    Article  PubMed  CAS  Google Scholar 

  7. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA. 1997;94:12457–61.

    Article  PubMed  CAS  Google Scholar 

  8. Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, Braun T, Tobin JF, Lee SJ. Myostatin mutation associated with gross muscle hypertrophy in a child. New Engl J Med. 2004;350:2682–8.

    Article  PubMed  CAS  Google Scholar 

  9. Zimmers TA, Davies MV, Koniaris LG. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486–8.

    Article  PubMed  CAS  Google Scholar 

  10. Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM. Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Muscoskelet Neuronal Interact. 2003;3:8–16.

    CAS  Google Scholar 

  11. Kirk S, Oldham J, Kambadur R, Sharma M, Dobbie P, Bass J. Myostatin regulation during skeletal muscle regeneration. J Cell Physiol. 2000;184:356–63.

    Article  PubMed  CAS  Google Scholar 

  12. Costelli P, Muscaritoli M, Bonetto A, et al. Muscle myostatin signaling is enhanced in experimental cancer cachexia. Eur J Clin Invest. 2008;38:531–8.

    Article  PubMed  CAS  Google Scholar 

  13. Liu C.-M, Yang Z, Liu C-W, Wang R, Tien P, Dale R, Sun LQ. Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. Gene Ther. 2008;15:155–66.

    Article  PubMed  Google Scholar 

  14. http://www.registri-tumori.it/PDF/AIRTUM2010Prevalenza/011_prev_sint.pdf.

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    PubMed  CAS  Google Scholar 

  16. Sobin LH, Wittekind C. TNM classification of malignant tumours, 5th edn. International Union Against Cancer (UICC). New York: Wiley; 1997.

    Google Scholar 

  17. Mountain CF. Revision in the international system for staging lung cancer Chest. 1997;111:1710–7.

    Article  PubMed  CAS  Google Scholar 

  18. Inui A. Cancer anorexia-cachexia syndrome: current issue in research and management. CA Cancer J Clin. 2002;52:72–91.

    Article  PubMed  Google Scholar 

  19. Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Rossi Fanelli F. Prevention and treatment of cancer cachexia: new insights into an old problem. Eur J Cancer. 2006;42:31–41.

    Article  PubMed  CAS  Google Scholar 

  20. Costelli P, Baccino FM. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin dependent proteolysis. Curr Opin Clin Nutr Metab Care. 2003;6:407–12.

    PubMed  CAS  Google Scholar 

  21. Bossola M, Muscaritoli M, Costelli P, Grieco G, Bonelli G, Pacelli F, Rossi Fanelli F, Doglietto GB, Baccino FM. Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg. 2003;237:384–9.

    PubMed  Google Scholar 

  22. Bossola M, Muscaritoli M, Costelli P, Bellantone R, Pacelli F, Busquets S, Argilés J, Lopez-Soriano FJ, Civello IM, Baccino FM, Rossi Fanelli F, Doglietto GB. Increased muscle ubiquitin mRNA levels in gastric cancer patients. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1518–23.

    PubMed  CAS  Google Scholar 

  23. DeJong CH, Busquets S, Moses AG, Schrauwen P, Ross JA, Argilés JM, Fearon KC. Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cachexia. Oncol Rep. 2005;14:257–63.

    PubMed  CAS  Google Scholar 

  24. Jagoe RT, Redfern CP, Roberts RG, Gibson GJ, Goodship TH. Skeletal muscle mRNA levels for cathepsis B, but not components of the ubiquitin-proteasome pathway, are increased in patients with lung cancer referred for thoracotomy. Clin Sci (Lond). 2002;102:353–61.

    Article  CAS  Google Scholar 

  25. McFarlane C, Plummer E, Thomas M, et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through NF-kB-independent, FoxO1-dependent mechanism. J Cell Physiol. 2006;209:501–14.

    Article  PubMed  CAS  Google Scholar 

  26. Tsuchida K. Targeting myostatin for therapies against muscle-wasting disorders. Curr Opin Drug Discov Dev. 2008;11:487–94.

    CAS  Google Scholar 

  27. Smith IJ, Aversa Z, Alamdari N, Petkova V, Hasselgren PO. Sepsis downregulates myostatin mRNA levels without altering myostatin protein levels in skeletal muscle. J Cell Biochem. 2010;111(4):1059–73.

    Article  PubMed  CAS  Google Scholar 

  28. Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, Ketelslegers JM, Thissen JP. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology. 2007;148:452–60.

    Article  PubMed  CAS  Google Scholar 

  29. Lalani R, Bhasin S, Byhower F, Tarnuzzer R, Grant M, Shen R, Asa S, Ezzat S, Gonzalez-Cadavid NF. Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J Endocrinol. 2000;167:417–28.

    Article  PubMed  CAS  Google Scholar 

  30. Yang W, Zhang Y, Li Y, Wu Z, Zhu D. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3β pathway and is antagonized by insulin-like growth factor 1. J Biol Chem. 2007;282:3799–808.

    Article  PubMed  CAS  Google Scholar 

  31. Muscaritoli M, Costelli P, Aversa Z, Bonetto A, Baccino FM, Rossi FF. New strategies to overcome cancer cachexia: from molecular mechanisms to the ‘Parallel Pathway.’ Asia Pac J Clin Nutr. 2008;17:387–90.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work supported by Ministero per l’Università e la Ricerca (Roma, Italy), University of Torino, Regione Piemonte, Associazione Italiana per la Ricerca sul Cancro (Milano, Italy), Compagnia di San Paolo, Torino, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Muscaritoli MD.

Additional information

The authors declare that this study has received no commercial sponsorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aversa, Z., Bonetto, A., Penna, F. et al. Changes in Myostatin Signaling in Non-Weight-Losing Cancer Patients. Ann Surg Oncol 19, 1350–1356 (2012). https://doi.org/10.1245/s10434-011-1720-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-1720-5

Keywords