Abstract
Grossberg and VanDieren have started a program to develop a stability theory for tame classes. We name some variants of tameness and prove the following. Let K be an AEC with Löwenheim-Skolem number ≤κ. Assume that K satisfies the amalgamation property and is κ-weakly tame and Galois-stable in κ. Then K is Galois-stable in κ⁺ⁿ for all n<ω. With one further hypothesis we get a very strong conclusion in the countable case. Let K be an AEC satisfying the amalgamation property and with Löwenheim-Skolem number ℵ₀ that is ω-local and ℵ₀-tame. If K is ℵ₀-Galois-stable then K is Galois-stable in all cardinalities.
Citation
John Baldwin. David Kueker. Monica VanDieren. "Upward Stability Transfer for Tame Abstract Elementary Classes." Notre Dame J. Formal Logic 47 (2) 291 - 298, 2006. https://doi.org/10.1305/ndjfl/1153858652
Information