Abstract
The rate equations for the intracavity-frequency-doubled quasi-three-level lasers are developed. By normalizing the related parameters, it is shown that the general solution to the rate equations is dependent upon four dimensionless parameters: the normalized reabsorption loss, the pump to laser-mode size ratio, the normalized pump level, and a parameter written as η shg , which is related to the ability of the nonlinear crystal to convert the fundamental to the second harmonic. By numerically solving these rate equations, a group of general curves are obtained to express the relations between the solution and the four dimensionless parameters.
Similar content being viewed by others
References
Martin, K. I., Clarkson, W. A., Hanna, D. C., 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser, Opt. Lett., 1996, 21(12): 875–877.
Otsuka, K., Kawai, R., Asakawa, Y., Intracavity second-harmonic and sum-frequency generation with a laser-diode-pumped multitransition-oscillation LiNdP4O12 laser, Opt. Lett., 1999, 24(22): 1611–1613.
Matthews, D. G., Conroy, R. S. Sinclair, B. D. et al., Blue microchip laser fabricated from Nd:YAG and KNbO3, Opt. Lett., 1996, 21(3): 198–200.
Kellner, T., Heine, F., Huber, G., Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5, Appl. Phys. B, 1997, 65(6): 789–792.
Pierrou, M., Laurell, F., Karlsson, H. et al., Generation of 740 mw of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal, Opt. Lett., 1999, 24(4): 205–207.
Zeller, P., Peuser, P., Efficient, multiwatt, continuous-wave laser operation on the 4F3/2-4I9/2 transitions of Nd:YVO4 and Nd:YAG, Opt. Lett., 2000, 25(1): 34–36.
Zhang, X., Wang, Q., Zhao, S. et al., Theory of intracavity-frequency-doubled solid-state four-level lasers, Science in China, Ser. E, 2002, 45(2): 130–139.
Fan, T. Y., Byer, R. L., Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser, IEEE J. Quantum Electron., 1987, 23(5): 605–612.
Risk, W. P., Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses, J. Opt. Soc. Am. B, 1988, 5(7): 1412–1423.
Tsira, T., Tulloch, W. M., Byer, R. L., Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers, Appl. Opt., 1997, 36(9): 1867–1874.
Lim, C., Izawa, Y., Modeling of end-pumped CW quasi-three-level lasers, IEEE J. Quantum Electron., 2002, 38(3): 306–311.
Zhang, X., Zhao, S., Wang, Q. et al., Laser diode pumped Cr4+:YAG passively Q-switched Nd3+:S-FAP laser, Opt. Commun., 1998, 155(1–3): 55–60.
Smith, R. G., Theory of intracavity optical second harmonic generation, IEEE J. Quantum Electron., 1970, 6(4): 215–230.
Laporta, R., Brussard, M., Design criteria for mode size optimization in diode-pumped solid-state lasers, IEEE J. Quantum Electron., 1991, 27(10): 2319–2326.
Chen, Y. F., Kao, C. F., Wang, S. C., Analytical model for the design of fiber-coupled laser-diode end-pumped lasers, Opt. Commun., 1997, 133(1–6): 517–524.
Zhang, X., Zhao, S., Wang, Q. et al., Modeling of diode-pumped actively Q-switched lasers, IEEE J. Quantum Electron., 1999, 35(12): 1912–1918.
Zhang, X., Zhao, S., Wang, Q. et al., Modeling of passively Q-switched lasers, J. Opt. Soc. Am. B, 2000, 17(7): 1166–1175.
Zhang, X., Zhao, S., Wang, Q. et al., Passively Q-switched self-frequency-doubled Nd3+:Gd Ca4O(BO3)3 laser, J. Opt. Soc. Am. B, 2001, 18(6): 770–779.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Q., Zhang, X., Li, P. et al. Theory of intracavity-frequency-doubled quasi-three-level cw lasers. Sci China Ser F 46, 381–389 (2003). https://doi.org/10.1360/02yf0202
Received:
Issue Date:
DOI: https://doi.org/10.1360/02yf0202