Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pretreatment of corn stover by soaking in aqueous ammonia

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soaking in aqueous ammonia (SAA) was investigated as a pretreatment method for corn stover. In this method, the feedstock was soaked in aqueous ammonia over an extended period (10–60 d) at room temperature. It was done without agitation at atmospheric pressure. SAA treatment removed 55–74% of the lignin, but retained nearly 100% of the glucan and 85% of the xylan. The xylan remaining in the corn stover after SAA treatment was hydrolyzed along with the glucan by xylanase present in the Spezyme CP enzyme. In the simultaneous saccharification and fermentation (SSF) test of SAA-treated corn stover, using S. cerevisiae (D5A), an ethanol yield of 73% of theoretical maximum was obtained on the basis of the glucan content in the treated corn stover. The accumulation of xylose in the SSF appears to inhibit the cellulase activity on glucan hydrolysis, which limits the yield of ethanol. In the simultaneous saccharification and co-fermentation (SSCF) test, using recombinant E. coli (KO11), both the glucan and xylose were effectively utilized, resulting in on overall ethanol yield of 77% based on the glucan and xylan content of the substrate. When the SSCF process is used, the fact that the xylan fraction is retained during pretreatment is a desirable feature since the overall bioconversion can be carried out in a single step without separate recovery of xylose from the pretreatment liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, V.S. and Holtzapple, M.T. (2000) Appl. Biochem. Biotechnol. 84/86, 5–37.

    Article  Google Scholar 

  2. Cowling, E.B. and Kirk, T.K. (1976) Biotechnol. Bioeng. Symp. 6, 95–123.

    PubMed  CAS  Google Scholar 

  3. Dulap, C.E., Thomson, J., and Chiang, L.C. (1976) AIChE. Symp. Ser. 72, 158, 58.

    Google Scholar 

  4. Lee, D., Yu, A.H.C., and Saddler, J.N. (1995) Biotechnol. Bioeng. 45, 328–336.

    Article  CAS  Google Scholar 

  5. Mooney, C.A., Mansfield, S.D., Touhy, M.G., and Saddler, J.N. (1998) Bioresou. Technol. 64, 113–119.

    Article  CAS  Google Scholar 

  6. Schwald, W., Brownell, H.H., and Saddler, J.N. (1988) J. Wood Chem. Tech. 8, 543–560.

    CAS  Google Scholar 

  7. Björling, T. and Lindman, B. (1989) Enzyme Microb. Technol. 11, 240–246.

    Article  Google Scholar 

  8. Fein, J.E., Tallim, S.R., and Lawford, G.R. (2004) Can. J. Microbiol. 30, 682–690.

    Article  Google Scholar 

  9. Hahn-Hägerdal, B., Jeppsson, H., Olsson, L., and Mohagheghi, A. (1994) Appl. Microbiol. Biotechnol. 41, 62–72.

    Google Scholar 

  10. Sanchez, B. and Bautista, J. (1988) Enzyme Microb. Technol. 10, 315–318.

    Article  CAS  Google Scholar 

  11. Tran, A.V. and Chambers, R.P. (1986) Enzyme Microb. Technol. 8, 439–444.

    Article  CAS  Google Scholar 

  12. Van Zyl, C., Prior, B.A., du Preez, J.C. (1991) Enzyme Microb. Technol. 13, 82–86.

    Article  Google Scholar 

  13. Watson, N.E., Prior, B.A., Lategan, P.M., and Lussi, M. (1984) Enzyme Microb. Technol. 6, 451–456.

    Article  CAS  Google Scholar 

  14. Kim, T.H., Kim, J.S., Sunwoo, C., and Lee, Y.Y. (2003) Bioresou. Technol. 90, 39–47.

    Article  CAS  Google Scholar 

  15. Iyer, P.V., Wu, Z.W., Kim, S.B., and Lee, Y.Y. (1996) Appl. Biochem. Biotechnol. 57/58, 121–132.

    CAS  Google Scholar 

  16. Kim, S.B. and Lee, Y.Y. (1996) Appl. Biochem. Biotechnol. 57/58, 147–156.

    Article  CAS  Google Scholar 

  17. Morris, P.J. and Mowat, D.N. (1980) Can. J. Animal Sci. 60, 327–336.

    Article  CAS  Google Scholar 

  18. Oji, U.I., Mowat, D.N., and Winch, J.E. (1977) J. Animal Sci. 44, 798–802.

    CAS  Google Scholar 

  19. Streeter, C.L. and Horn, G.W. (1982) Animal Feed Sci. Technol. 7, 325–329.

    Article  CAS  Google Scholar 

  20. Dien, B.S., Hespell, R.B., Wyckoff, H.A., and Bothast, R.J. (1998) Enzyme Microb. Technol. 23, 366–371.

    Article  CAS  Google Scholar 

  21. Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., and Ingram, L.O. (2004) Appl. Environ. Microbiol. 57, 893–900.

    Google Scholar 

  22. NREL (1996 Chemical Analysis and Testing Laboratory Analytical Procedures (CAT), National Renewable Energy Laboratory, Golden, CO.,

    Google Scholar 

  23. Xial, Z., Zhang, X., Gregg, D.J., and Saddler, J.N. (2004) Appl. Biochem. Biotechnol. 113/116, 1115–1126.

    Google Scholar 

  24. Nigam, P. and Prabhu, K.A. (1991) J. Basic Microb. 31, 279–283.

    Article  CAS  Google Scholar 

  25. Todorovic, R. and Grujic, S. (1987) Microbios Lett., 34, 71–78.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Lee, Y.Y. Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol 124, 1119–1131 (2005). https://doi.org/10.1385/ABAB:124:1-3:1119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:124:1-3:1119

Index Entries