Abstract
Tetrahydrobiopterin (BH4) is a member of the pterin family that has a core structure of pyrazino-2,3-d-pyrimidine rings. Because BH4 is an essential cofactor for the biosynthesis of nitric oxide (a major vasodilator), there is growing interest in BH4 biochemistry in endothelial cells (the cells that line blood vessels). BH4 is synthesized via de novo and salvage pathways from guanosine 5′-triphosphate (GTP) and 7,8-dihydrobiopterin, respectively, in animal cells. GTP cyclohydrolase-I (GTP-CH) is the first and rate-controlling enzyme in the de novo pathway. Available evidence shows that endothelial GTP-CH expression and BH4 synthesis are stimulated by a wide array of nutritional (phenylalanine and arginine), hormonal (insulin and estrogen), immunological (inflammatory cytokines including interleukin [IL]-1, interferon-γ, and tumor necrosis factor-α), therapeutic (statins and cyclosporin A), and endothelium-derived (basic fibroblast growth factor and H2O2) factors. In contrast, glucocorticoids and anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor [TGF]-β) inhibit endothelial BH4 synthesis. Because BH4 is oxidized to 7,8-dihydrobiopterin and 7,8-dihydropterin at physiological pH, endothelial BH4 homeostasis is regulated by both BH4 synthesis and its oxidation. Vitamin C, folate, and other antioxidants enhance endothelial BH4 bioavailability through chemical stabilization or scavenging of reactive oxygen species, thereby contributing to the maintenance of physiological homeostasis in the endothelium. New know ledge about the cellular and molecular mechanisms for the regulation of endothelial BH4 synthesis and bioavailability is beneficial for developing effective means to prevent and treat cardiovascular disorders, the leading cause, of death in developed nations.
Similar content being viewed by others
References
Hopkins, F. G. (1889) Note on a yellow pigment in butterflies. Nature 40, 335.
Werner-Felmayer, C., Golderer, G., and Werner, E. R. (2002) Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr. Drug Meta. 3, 159–173.
Thony, B., Auerbach, G., and Blau N. (2000) Tetrahydrobiopterin biosynthesis, regeneration and function. Biochem. J. 347, 1–16
Wei, C. C., Crane, B. R., and Stuehr, D. J. (2003) Tetrahydrobiopterin radical enzymology. Chem. Rev. 103, 2365–2383.
Kaufman, S. (1993) New tetrahydrobiopterin-dependent systems. Annu. Rev. Nutr. 13, 261–286.
Fitzpatrick, P. F. (1999) Tetrahydrobiopterin-dependen amino acid hydroxylases. Annu. Rev. Biochem. 68, 355–381.
Wei, C. C., Wang, Z. Q., Hemann, C., Hille, R., and Stuehr, D. J. (2003) A tetrahydrobiopterin radical forms and then becomes reduced during Nω-hydroxyarginine oxidation by nitric-oxide synthase. J. Biol. Chem. 278, 46668–46673.
Ignarro, L. J., Cirino, G., Casini, A., and Napoli, C. (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol 34, 879–886.
Wu, G. and Meininger, C.J. (2000) Arginine nutrition and cardiovascular function. J. Nutr. 130, 2626–2629.
Walter R., Schaffner, A., and Schoedon, G. (2001) Tetrahydrobiopterin in the vascular system. Pteridines 12, 93–120.
Katusic, Z. S. (2001) Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am. J. Physiol. Heart Circ. Physiol. 281, H981-H986.
Stroes, E., Kastelein, J., Cosentino, F., Erkelens, W., Wever, R., Koomans, H., et al. (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J. Clin. Invest. 99, 41–46.
Heitzer T., Krohn, K., Albers, S., and Meinertz, T. (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia 43, 1435–1438.
Heitzer, T., Brockhoff, C., Mayer, B., Warnholtz, A., Mollnau, H., Henne, S., et al. (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers. Circ. Res. 86, e36-e41.
Shinozaki, K., Nishio, Y., Okamura, T., Yoshida, Y., Maegawa, H., Kojima, H., et al. (2000) Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin-resistant rats. Circ. Res. 87, 566–573.
Tiefenbacher, C. P., Bleeke, T., Vahl, C., Amann, K., Vogt, A., and Kubler, W. (2000) Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in atherosclerosis. Circulation 102, 2172–2179.
Yamashirom, S., Noguchi, K., Kuniyoshi, Y., Koja, K., and Sakanashi, M. (2003) Role of tetrahydrobiopterin on ischemia-reperfusion injury in isolated perfused rat hearts. J. Cardiovasc. Surg. 44, 37–49.
Blau, N., Thony, B., Cotton R. G. H., and Hyland, K. (2001) Disorders of tetrahydrobiopterin and related biogenic amines, in The Metabolic and Molecular Bases of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., Childs, B., Kinzler, K. W., et al. eds.), McGraw-Hill Companies Inc., New York, pp. 1725–1776.
Gross, S. S., Jones, C. L., Hattori, Y., and Raman, C. S. (2000) Tetrahydrobiopterin: an essential cofactor of nitric oxide synthase with an elusive role, in Nitric Oxide: Biology and Pathobiology (Ignarro, L. J., ed.), Academic Press, New York, pp. 167–185.
Marinos, R. S., Zhang, W., Wu, G., Kelly, K. A., and Meininger, C. J. (2001) Tetrahydrobiopterin levels regulate endothelial cell proliferation. Am. J. Physiol. Heart Circ. Physiol. 281, H482-H489.
Fisher, D. B. and Kaufman, S. (1973) Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase. J. Biol. Chem. 248, 4300–4304.
Armarego, W. L. F., Randles, D., and Taguchi, H. (1983) Peroxidase catalysed aerobic degradation of 5,6,7,8-tetrahydrobiopterin at physiological pH. Eur. J. Biochem. 135, 393–403.
Davis, M. D., Kaufman, S., and Milstien, S. (1988) The auto-oxidation of tetrahydrobiopterin. Eur. J. Biochem. 173, 345–351.
Milstien, S. and Katusic, Z. (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem. Biophys. Res. Commun. 263, 681–684.
Hamon, C. G., Cutler, P., and Blair, J A. (1989) Tetrahydrobiopterin metabolism in the streptozotocin induced diabetic state in rats. Clin. Chim. Acta 181, 249–254.
Shinozaki, K., Kashiwagi, A., Nishio, Y., Okamura, T., Yoshida, Y., Masada, M., et al. (1999) Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2-imbalance in insulin-resistant rat aorta. Diabetes 48, 2437–2445.
Duch, D. S., Bowers, S. W., Woolf, J. H., and Nichol, C. A. (1984) Biopterin cofactor biosynthesis: GTP cyclohydrolase, neopterin and biopterin in tissues and body fluids of mammalian species. Life Sci. 35, 1895–1901.
Blau, N., Kierat, L., Matasovic, A., Leimbacher, W., Heizmann, C. W., Guardamagna, O., et al. (1994) Antenatal diagnosis of tetrahydrobiopterin deficiency by quantification of pterins in amniotic fluid and enzyme activity in fetal and extrafetal tissue. Clin. Chim. Acta 226, 159–169.
Nixon, J. C., Lee, C. L., Milstien, S., Kaufman, S., and Bartholome, K. (1980) Neopterin and biopterin levels in patients with atypical forms of phenylketonuria. J. Neurochem. 35, 898–904.
Nichol, C. A., Smith, G. K., and Duch, D. S. (1985) Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu. Rev. Biochem. 54, 729–764.
Hatakeyama, K., Harada, T., and Kagamiyama, H. (1992) IMP dehydrogenase inhibitors reduce intracellular tetrahydro-biopterin levels through reduction of intracellular GRP level. Indications of the regulation of GRP cyclohydrolase I activity by restriction of GTP availability in the cells. J. Biol. Chem. 267, 20734–20739.
Wu, G., Majumdar, S., Zhang, J., Lee, H., and Meininger, C. J. (1994) Insulin stimulates glycolysis and pentose cycle activity in bovine microvascular endothelial cells. Comp. Biochem. Physiol. 108C, 179–185.
Wu, G., Haynes, T. E., Hui, H., Yan, W., and Meininger, C. J. (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem. J. 353, 245–252.
Shin, C. Y., Choi, J. W., Ryu, J. R., Ko, K. H., Choi, J. J., Kim, H. S., et al. (2002) Glucose deprivation decreases nitric oxide production via NADPH depletion in immunostimulated rat primary astrocytes. Glia 37, 268–274.
Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y., and Kagamiyama, H. (1989) Purification and characterization of rat liver GTP cyclohydrolase I: cooperative binding of GTP to the enzyme. J. Biol. Chem. 264, 21660–21664.
Harada, T., Kagamivama, H., and Hatakeyama, K. (1993) Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity. Science 260, 1507–1510.
Hatakeyama, K., Inoue, Y., Harada, T., and Kagamiyama, H. (1991) Cloning and sequencing of cDNA encoding rat GTP cyclohydrolase I: the first enzyme of the tetrahydrobiopterin biosynthesis pathway. J. Biol. Chem. 266, 765–769.
Yoneyama, T., Brewer, J. M., and Hatakeyama, K. (1997) GTP cyclohydrolase I feedback regulatory protein is a pentamer of identical subunits: purification, cDNA cloning, and bacterial expression. J. Biol. Chem. 272, 9690–9696.
Yoneyama, T. and Hatakeyama, K. (1998) Decameric GTP cyclohydrolase I forms complexes with two pentameric GTP cyclohydrolase I feedback regulatory proteins in the presence of phenylalanine or of a combination of tetrahydrobiopterin and GTP. J. Biol. Chem. 273, 20102–20108.
Maita, N., Okada, K., Hirotsu, S., Hatakeyama, K., and Hakoshima, T. (2001) Preparation and crystallization of the stimulatory and inhibitory complexes of GTP cyclohydrolase I and its feedback regulatory protein, GFRP. Acta Crystallographica D-Biol. Crystallography 57, 1153–1156.
Maita, N., Okada, K., Hatakeyama, K., and Hakoshima, T. (2002) Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP. Proc. Natl. Acad. Sci. U S A 97, 3832–3837.
Geller, D. A., Di Silvio, M., Billiar, T. R., and Hatakeyama, K. (2000) GTP cyclohydrolase I is co-induced in hepatocytes stimulated to produce nitric oxide. Biochem. Biophys. Res. Commun. 276, 633–641.
Pastor, C. M., Williams, D., Yoneyama, T., Hatakeyama, K., Singleton, S., Naylor, E., et al. (1996) Competition for tetrahydrobiopterin between phenylalanine hydroxylase and nitric oxide synthase in rat liver. J. Biol. Chem. 271, 24534–24538.
Cai, S., Alp, N. J., McDonald, D. Smith, I., Kay, J., Canevari, L. et al. (2002) GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthese activity, protein levels, and dimerisation. Cardiovasc. Res. 55, 838–849.
Zheng, J. S., Yang, X. G., Lookingland, K. J., Fink, G. D., Hesslinger, C., Kapatos, G., et al. (2003) Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low rennin hypertension. Circulation 108, 1238–1245.
Wu, G. and Meininger, C.J. (1995) Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rats. Am. J. Physiol. Heart Circ. Physiol. 269, H1312-H1318.
Meininger, C. J., Marinos, R. S., Hatakeyama, K., Martinezzaguilan, R., Rojas, J. D., Kelly, K. A., et al. (2000) Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem. J. 349, 353–356.
Meininger, C. J., Hatakeyama, K., Haynes, T. E., Kelly, K. A., and Wu, G. (2001) Tetrahydrobiopterin deficiency in diabetic rats, in Chemistry and Biology of Pteridines and Folates (Milstien, S., Kapatos, G., Levine, R. A., and Shane, B., eds.), Kluwer Academic Publishers, Boston, MA, pp. 349–353.
Meininger, C. J., Kelly, K. A., Hatakeyama, K., and Wu, G. (2004) Tetrahydrobiopterin deficiency occurs in both type I and type II diabetes mellitus: role of insulin and GTP-CH, in Pterins, Folates, and Neurotransmitters in Molecular Medicine (Blau, N. and Thony, B., eds.), SPS Verlagsgesellschaft mbh, Heilbronn, Germany, pp. 85–89.
Kohli, R., Meininger, C. J., Haynes, T. E., Yan, W., Self, J. T., and Wu, G. (2004) Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J. Nutr. 134, 600–608.
Meininger, C. J., Cai, S., Parker, J. L., Channon, K. M., Kelly, K. A., Becker, E. J., et al. (2004) GTT cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic BB rats. FASEB, J., in press.
Alp, N. J., Mussa, S., Khoo, J., Cai, S. J., Guzik, T., Jefferson, A., et al. (2003) Tetrahydro-biopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J. Clin. Invest. 112, 725–735.
Pannirelvam, M., Simon, V., Verma, S., Anderson, T., and Triggle, C. R. (2003) Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small meserteric arteries from diabetic (db/db) mice. Br. J. Pharmacol. 140, 701–706.
Wu, G., Kelly, K. A., Hatakeyama, K., and Meininger, C. J. (2004) Regulation of endothelial tetrahydrobiopterin synthesis by L-arginine, in Pterins, Folates, and Neurotransmitters in Molecular Medicine (Blau, N. and Thony, B., eds.), SPS Verlagsgesellschaft mbh, Heilbronn, Germany, pp. 56–61.
Gesierich, A., Nirromand, F., and Tiefenbacher, C. P. (2002) Role of human GTP cyclohydrolase I and its regulatory protein in tetrahydrobiopterin metabolism. Basic Res. Cardiol. 98, 69–75.
Yoneyama, T. and Hatakeyama, K. (2001) Ligand binding to the inhibitory and stimulatory GTP cyclohydrolase I/GTP cyclohydrolase I feedback regulatory protein complexes. Protein Sci. 10, 871–878.
Werner, E. R., Bahrami, S., Heller, R., and Werner-Felmayer, G. (2002) Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase feedback regulatory protein. J. Biol. Chem. 227, 10129–10133.
Li, H., Meininger, C. J., Hawker, J. R., Haynes, T. E., Kepka-Lenhart, D., Mistry, S. K., et al. (2001) Regulatory role of arginase I and II in nitric oxide, polyamine and proline syntheses in endothelial cells. Am. J. Physiol. 280, E75-E81.
Arnal, J.-F., Munzel, T., Venema, R. C., James, N. L., Bai, C.-L., Mitch, W. E., et al. (1995) Interactions between L-arginine and L-glutamine change endothelial NO production. J. Clin. Invest. 95, 2565–2572.
Wu, G. and Meininger, C. J. (2002) Regulation of nitric oxide synthesis by dietary factors. Annu. Rev. Nutr. 22, 61–86.
Bagi, Z. and Koller, A. (2003) Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. J. Vasc. Res. 40, 47–57.
Zeng, G. and Quon, M. (1996) Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J. Clin. Invest. 98, 894–898.
Verma, S., Arikawa, E., Yao, L., Laher, I., and McNeill, J. H. (1998) Insulin-induced vasodilation is dependent on tetrahydrobiopterin synthesis. Metabolism 47, 1037–1039
Ishii, M., Shimizu, S., Nagai, T., Kiuchi, Y., and Yamamoto, T. (1999) Insulin stimulates tetrahydrobiopterin synthesis in mouse brain microvascular endothelial cells. Pteridines 10, 213–216.
Ishii, M., Shimizu, S., Nagai, T., Shiota, K., Kiuchi, Y., and Yamamoto, T. (2001) Stimulation of tetrahydrobiopterin synthesis induced by insulin: possible involvement of phosphatidylinositol 3-kinase. Int. J. Biochem. Cell Biol. 33, 65–73.
Saruta, T. (1996) Mechanism of glucocorticoid-induced hypertension. Hypertens. Res. 19, 1–8.
Mitchell, B. M. and Webb, R. C. (2002) Impaired vasodilation and nitric oxide synthase activity in glucocorticoid-induced hypertension. Biol. Res. Nurs. 4, 16–21.
Simmons, W. W., Ungureanu-Longrois, D., Smith, G. K., Smith, T. W., and Kelly, R. A. (1996) Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydro-biopterin synthesis and L-arginine transport. J. Biol. Chem. 271, 23928–23937.
Johns, D. G., Dorrance, A. M., Tramontini, N. L., and Webb, R. C. (2001) Glucocorticoids inhibit tetrahydrobiopterin-dependent endothelial function. Exp. Biol. Med. 226, 27–31.
Holm, P., Korsgaard, P., Shalmi, M., Andersen, H. L., Hougaard, P., Skouby, S. O., et al. (1997) Significant reduction of the antiatherogenic effect of estrogen by long-term inhibition of nitric oxide synthesis in cholesterol-clamped rabbits. J. Clin. Invest. 100, 821–828.
MacRitchie, A. N., Jun, S. S., Chen, Z., German, Z., Yuhanna, I. S., et al. (1997) Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circ. Res. 81, 355–362.
Shiota, K., Ishii, M., Yamamoto, T., Shimizu, S., and Kiuchi, Y. (2000) Stimulation of tetrahydrobiopterin synthesis by 17(-estradiol in brain microvascular endothelial cells. Pteridines 11, 129–132.
Gonzales, R. J., Walker, B. R., and Kanagy, N. L. (2001) 17 beta-estradiol increases nitric oxide-dependent dilation in rat pulmonary, arteries and thoracic aorta. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L555-L564.
Werner, E. R., Werner-Felmayer, G., and Mayer, B. (1998) Tetrahydrobiopterin, cytokines, and nitric oxide synthesis. Proc. Soc. Exp. Biol. Med. 219, 171–182.
Schoedon, G., Schneemann, M., Blau, N., Edgell, C.-J. S., and Chaffner, A. (1993) Modulation of human endothelial cell tetrahydrobiopterin synthesis by activating and deactivating cytokines: new perspectives on endothelium-derived relaxing factor. Biochem. Biophys. Res. Comm. 196, 1343–1348.
Rosenkranz-Weiss, P., Sessa, W. C., Milstien, S., Kaufman, S., Watson, C. A., and Pober, J. S. (1994) Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. J. Clin. Invest. 93, 2236–2243.
Walter, R., Schaffner, A., Blau, N., Kierat, L., and Schoedon, G. (1994) Tetrahydrobiopterin is a secretory product of murine vascular endothelial cells. Biochem. Biophys. Res. Comm. 203, 1522–1526.
Wolin, M. S. (2000) Mechanisms through which reactive nitrogen and oxygen species interact with physiological signaling systems, in Nitric Oxide: Biology and Pathobiology (Ignarro, L. J., ed.), Academic Press, New York, NY, pp. 277–292.
Shimizu, S., Ishii, M., Kawakami, Y., Momose, K., and Yamamoto, T. (1998) Protective effects of tetrahydrobiopterin against nitric oxide-induced endothelial cell death. Life Sci. 63, 1585–1592.
Hattori, Y., Nakanishi, N., Kasai, K., and Shimoda, S. (1997) GTP cyclohydrolase I mRNA induction and tetrahydrobiopterin synthesis in human endothelial cells. Biochim. Biophys. Acta 1358, 61–66.
Werner-Felmayer, G., Werner, E. R., Fuchs, D., Hausen, A., Reibnegger, G., Schmidt, K., et al. (1993) Pteridine biosynthesis in human endothelial cells: impact on nitric oxide-mediated formation of cyclic GMP. J. Biol. Chem. 268, 1842–1846.
Katusic, Z. S., Stelter, A., and Milstien, S. (1998) Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18, 27–32.
Hattori, Y., Nakanishi, N., Kasai, K., and Shimoda, S. (1997) GTP cyclohydrolase I mRNA induction and tetrahydrobiopterin synthesis in human endothelial cells. Biochim. Biophys. Acta. 1358, 61–66.
Walter, R., Linscheid, P., Blau, N., Kierat, L., Schaffner, A., and Schoedon, G. (1998) Induction of tetrahydrobiopterin synthesis in human umbilical Vein smooth muscle cells by inflammatory stimuli. Immunol. Lett. 60, 13–17.
Andert, S. E., Griesmacher, A., Zuckermann, A., and Muller, M. M. (1992) Neopterin release from human endothelial-cells is triggered by interferon-gamma. Clin. Exp Immunol. 88, 555–558.
Linscheid, P., Schaffner, A., Blau, N., and Schoedon, G. (1998) Regulation of 6-pyruvoyl-tetrahydroptein synthase activity and messenger RNA abundance in human vascular endothelial cells. Circulation 98, 1703–1706.
Franscini, N., Blau, N., Walter, R. B., Schaffner, A., and Schoedon, G. (2003) Critical role of interleukin-1 beta for transcriptional regulation of endothelia 6-pyruvoyltetrahydropterin synthase. Arterioscler. Thromb. Vas. Biol. 23, E50-E53.
Wei, L. H., Jacobs, A. T., Morris, S. M., and Ignarro, L. J. (2000) IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/Stat6 pathways in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 279, C248-C256.
Endres, M., Laufs, U., Huang, Z. H., Nakamura, T., Huang, P., Moskowitz, M. A., et al. (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U S A 95, 8880–8885.
Hattori, Y., Nakanishi, N., Akimoto, K., Yoshida, M., and Kasai K. (2003) HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23, 176–182.
Rubin, A. M., and Kang, H. (1987) Cerebral blindness and encephalopathy with cyclosporin A toxicity. Neurology 37, 1072–1076.
Ishii, M., Shimizu, S., Shiota, K., Yamamoto, S., Kiuchi, Y., and Yamamoto, T. (2002) Stimulation of tetrahydrobiopterin synthesis by cyclosporin A in mouse brain microvascular endothelial cells. Int. J. Biochem. Cell Biol. 34, 1134–1141.
Ishii, M., Shimizu, S., Shiota, K., Yamamoto, S., Kiuchi, Y., and Yamamoto, T. (2002) Stimulation of tetrahydrobiopterin synthesis by cyclosporine A during lipopolysaccharide treatment in vascular endothelial cells. Pteridines 13, 89–93.
Matoba, T., Shimokawa, H., Nakashima, M., Hirakawa, Y., Mukai, Y., Hirano, K., et al. (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J. Clin. Invest. 106, 1521–1530.
Shimizu, S., Shiota, K., Yamamoto, S., Miyasaka, Y., Ishii, M., Watabe, T., et al. (2003) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Free Rad. Biol. Med. 34, 1343–1352.
Shiota, K., Shimizu, S., Ishii, M., Yamamoto, S., Iwasaki, M., Yamamoto, T., et al. (2002) Hydrogen peroxide stimulates the LPs-induced tetrahydrobiopterin synthesis in mouse brain microvascular endothelial cells. Pteridimes 13, 21–25.
Wu, H. M., Yuan, Y., McCarthy, M., and Granger, H. J. (1996) Acidic and basic FGFs dilate arterioles of skeletal muscle through a NO-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 40, H1087-H1093.
Shimizu, S., Miyasaka, Y., Yamamoto, S., Ishii, M., and Kiuchi, Y. (2003) Stimulation of tetrahydrobioptenin synthesis by basic fibroblast growth factor in vascular endothelial cells. Pteridines 14, 9–12.
Dhillon, B., Badiwala, M. V., Maitland, A., Rao, V., Li, S. H., and Verma, S. (2003) Tetrahydrobiopterin attenuates homocysteine induced endothelial dysfunction. Mol. Cell. Biochem. 247, 223–227.
Fiege, B., Ballhausen, D., Kierat, L., Leimbacher, W., Goriounov, D., Schircks, B., et al. (2004) Plasma tetrahydrobiopterin and its pharmacokinetic following oral administration. Mol. Genet. Metab. 81, 45–51.
Tsutsui, M., Milstien, S., and Katusic, Z. S. (1996) Effect of tetrahydrobiopterin on endothelial function in canine middle cerebral arteries. Circ. Res. 79, 336–342.
Kirsch, M., Korth, H. G., Stenert, V., Sustmann, R., and de Groot, H. (2003) The autoxidation of tetrahydrobiopterin revisited—proof of superoxide formation from reaction of tetrahydrobiopterin with molecular oxygen. J. Biol. Chem. 278, 24481–24490.
Kuzkaya, N., Weissmann, N., Harrison, D. G., and Dikalov, S. (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols—implications for uncoupling endothelial nitric-oxide synthase. J. Biol. Chem. 278, 22546–22554.
Yang, D., Levens, N., Zhang, J. N., Vanhoutte, P. M., and Feletou, M. (2003) Specific potentiation of endothelium-dependent contractions in SHR by tetrahydrobiopterin. Hypertension 41, 136–142.
Ihlemann, N., Rask-Madsen, C., Perner, A., Dominguez, H., Hermann, T., Kober, L., et al. (2003) Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am. J. Physiol. Heart Circ. Physiol. 285, H875-H882.
Fukushima, T. and Nixon, J. C. (1980) Analysis of reduced forms of biopterin in biological tissues and fluids. Anal. Biochem. 102, 176–188.
Shinozaki, K., Hirayama, A., Nishio, Y., Yoshida, Y., Ohtani, T., Okamura, T., et al. (2001) Coronary endothelial dysfunction in the insulin-resistant state is linked to abnormal pteridine metabolism and vascular oxidative stress. J. Am. Coll. Cardiol. 38, 1821–1828.
Kapatos, G. (1990) Tetrahydrobiopterin synthesis rate and turnover time in neuronal cultures from embryonic rat mesencephalon and hypothalamus. J. Neurochem. 55, 129–136.
Kapatos, G., Hirayama, K., and Hasegawa, H. (1992) Tetrahydrobiopterin turnover in cultured rat sympathetic neurons: developmental profile, pharmacologic sensitivity, and relationship to norepinephrine synthesis. J. Neurochem. 59, 2048–2055.
Das, U. N. (2003) Folic acid says NO to vascular diseases. Nutrition 19, 686–692.
Huang, A., Vita, J. A., Vnema, R. C., and Keaney, J. F. (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J. Biol. Chem. 275, 17399–17406.
Heller, R., Unbehaun, A., Schellenberg, B., Mayer, B., Werner-Felmayer, G., and Werner, E. R. (2001) L-ascorbic acid potentiates endothelia nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J. Biol. Chem. 276, 40–47.
d'Uscio, L. V., Milstien, S., Richardson, D., Smith, L., and Katusic, Z. S. (2003) Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ. Res. 92, 88–95.
Hyndman, M. E., Verma, S., Rosenfeld, R. J., Anderson, T. J., and Parsons, H. G. (2002) Interaction of 5-methyltetrahydrofolate and tetrahydrobiopterin on endothelial function. Am. J. Physiol. Heart Circ. Physiol. 282, H2167-H2172.
Fang, Y. Z., Yang, S., and Wu, G. (2002) Free radicals, antioxidants, and nutrition. Nutrition 18, 872–879.
Rezk, B. M., Haenen, G. R. M. M., van der Vijgh, W. J. F., and Bast, A. (2003) Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. FEBS Lett. 555, 601–605.
Reiter, R. and Tan, D. X. (2002) Melatonin: an antioxidant in edible plants. Ann. N.Y. Acad. Sci. 957, 341–344.
Quyyumi, A. A. (1998) Does acute improvement of endothelial dysfunction in coronary artery disease improve myocardial ischemia? A double-blind comparison of parenteral D-and L-arginine. J. Am. Coll. Cardiol. 32, 904–911.
Ruiz, E. and Tejerina, T. (1998) Relaxant effects of L-citrulline in rabbit vascular smooth muscle. Br. J. Pharmacol. 125, 186–192.
Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., and Turner, N. D. (2004) Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492.
Komori, Y., Hyun, J. J., Chiang, K., and Fukuto, J. M. (1995) The role of thiols in the apparent activation of rat-brain nitric-oxide synthase (NOS), J. Biochem. 117, 923–927.
Ghigo, D., Alessio, P., Foco, A., Bussolino, F., Costamagna, C., Heller, R., et al. (1993) Nitric-oxide synthesis is impaired in glutathione-depleted human umbilical vein endothelial-cells. Am. J. Physiol. 265, C728-C732.
Tachi, Y., Okuda, Y., Bannai, C., Bannai, S., Shinohara, M., Shimpuu, H., et al. (2001) Hyperglycemia in diabetic rats reduces the glutathione content in the aortic tissue. Life Sci. 69, 1039–1047.
Ganafa, A. A., Socci, R. R., Eatman, D., Silvestrova, N., Abukhalaf, I. K., and Bayorh, M. A. (2002) Acute inhibiition of glutathione biosynthesis alters endothelial function and blood pressure in rats. Eur. J. Pharmacol. 454, 217–223.
Gilmont, R. R., Dardano, A., Young, M., Engle, J. S., Adamson, B. S., Smith, D. J., et al. (1998) Effects of glutathione depletion on oxidant-induced endothelial cell injury. J. Surg. Res. 80, 62–68.
Bleeke, T., Zhang, H., Madamanchi, N., Patterson, C., and Faber, J. E. (2004) Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ. Res. 94, 37–45.
Barzilai, A., Melamed, E., and Shirvan, A. (2001) Is there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease? Cell. Mol. Neurobiol. 21, 215–235.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, W., Meininger, C.J., Haynes, T.E. et al. Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41, 415–433 (2004). https://doi.org/10.1385/CBB:41:3:415
Issue Date:
DOI: https://doi.org/10.1385/CBB:41:3:415