Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Principles and practices of laser scanning confocal microscopy

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The laser scanning confocal microscope (LSCM) is an essential tool for many biomedical imaging applications at the level of the light microscope. The basic principles of confocal microscopy and the evolution of the LSCM into today’s sophisticated instruments are outlined. The major imaging modes of the LSCM are introduced including single optical sections, multiple wavelength images, three-dimensional reconstructions, and living cell and tissue sequences. Practical aspects of specimen preparation, image collection, and image presentation are included along with a primer on troubleshooting the LSCM for the novice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paddock, S. W. (1999) Confocal laser scanning microscopy. BioTechniques 27, 992–1004.

    PubMed  CAS  Google Scholar 

  2. Pawley, J. B (1995) Handbook of Biological Confocal Microscopy, 2nd ed., Plenum, New York.

    Google Scholar 

  3. Chen, H., Hughes, D. D., Chan, T. A., Sedat, J. W., and Agard, D. A. (1996) IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J. Struct. Biol. 116, 56–60.

    Article  PubMed  CAS  Google Scholar 

  4. Potter, S. M. (1996) Vital imaging: two photons are better than one. Curr. Biol. 6, 1595–1598.

    Article  PubMed  CAS  Google Scholar 

  5. Minsky, M. (1988) Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138.

    Google Scholar 

  6. Inoue, S. and Spring, K. S. (1997) Video Microscopy: The Fundamentals, 2nd ed. Plenum, New York.

    Google Scholar 

  7. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M. et al. (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genetics 14, 457–460.

    Article  PubMed  CAS  Google Scholar 

  8. White, J. G., Amos, W. B., Durbin, R., and Fordham, M. (1990) Development of a confocal imaging system for biological epifluorescence application, in Optical Microscopy For Biology, Wiley-Liss, New York, pp. 1–18.

    Google Scholar 

  9. White, J. G., Amos, W. B., and Fordham, M. (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48.

    Article  PubMed  CAS  Google Scholar 

  10. Pawley, J. B. (1995) Light paths of current commercial confocal microscopes for biology, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley J. B., ed.) Plenum, New York, pp. 581–598.

    Google Scholar 

  11. Terasaki, M. and Dailey, M. E. (1995) Confocal microscopy of living cells, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley J. B., ed.), Plenum, New York, pp. 327–346.

    Google Scholar 

  12. Cheng, H., Lederer, W. J., and Cannell, M. B. (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.

    Article  PubMed  CAS  Google Scholar 

  13. White, N. S. (1995) Visualization systems for multidimensional CLSM, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley J.B., ed.) Plenum, New York, pp. 211–254.

    Google Scholar 

  14. Stricker, S. A., Centonze, V. E., Paddock, S. W., and Schatten, G. (1992) Confocal microscopy of fertilization-induced calcium dynamics in sea urchin eggs. Dev. Biol. 149, 370–380.

    Article  PubMed  CAS  Google Scholar 

  15. Paddock, S. W., Hazen, E. J., and De Vries, P. J. (1997) Methods and applications of three color confocal imaging. BioTechniques 22, 120–126.

    PubMed  CAS  Google Scholar 

  16. Thomas, C. F., DeVries, P., Hardin, J., and White, J. G. (1996) Four dimensional imaging: computer visualization of 3D movements in living specimens. Science 273, 603–607.

    Article  PubMed  CAS  Google Scholar 

  17. Mohler, W. A. and White, J. G. (1998) Stereo-4-D reconstruction and animation from living fluorescent specimens. Biotechniques 24, 1006–1012.

    PubMed  CAS  Google Scholar 

  18. Paddock, S. W., Mahoney, S., Minshall, M., Smith, L. C., Duvic, M., and Lewis, D. (1991) Improved detection of in situ hybridization by laser scanning confocal microscopy. BioTechniques 11, 486–494.

    PubMed  CAS  Google Scholar 

  19. Serbedzija, G. N., Bronner-Fraser, M., and Fraser, S. (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307.

    PubMed  CAS  Google Scholar 

  20. Deerinck, T. J., Martone, M. E., Lev-Ram, V., Green, D. P. L., Tsien R. Y., Spector, D. L., et al. (1994) Fluorescence photooxidation with eosin: a method for high resolution immunolocalisation and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910.

    Article  PubMed  CAS  Google Scholar 

  21. Paddock, S. W. and Cooke, P. (1988) Correlated confocal laser scanning microscopy with high-voltage electron microscopy of focal contacts in 3T3 cells stained with Napthol Blue Black. EMSA Abs 46, 100–101.

    Google Scholar 

  22. Sheppard, C. J. R. and Shotten, D. M. (1997) Confocal laser scanning microscopy. Royal Microscopical Society Handbook Series #38, Bios scientific publishers, Oxford, UK.

    Google Scholar 

  23. Matsumoto, B. (2000) Cell Biological Applications of Confocal Microscopy, 2nd ed. Methods In Cell Biology, Academic Press, San Diego, CA, in press.

    Google Scholar 

  24. Paddock, S. W. (1998) Protocols In Confocal Microscopy. Methods In Mol. Biol. 122. (J. Walker, ed.) Humana, Totowa, NJ.

    Google Scholar 

  25. Spector, D. L., Goldman, R., and Leinwand, L. (1998) Cells: A Laboratory Manual, vol. II Light Microscopy and Cell Structure. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  26. Cullander, C. (1994) Imaging in the far-red with electronic light microscopy: requirements and limitations. J. Microsc. 176, 281–286.

    PubMed  CAS  Google Scholar 

  27. Keller, H. A. (1995) Objective lenses for confocal microscopy, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley, J. B., ed.), Plenum, New York, pp. 111–126.

    Google Scholar 

  28. Wilson, T. (1995) The role of the pinhole in confocal imaging system, in Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley, J. B., ed.), Plenum, New York, pp. 167–182.

    Google Scholar 

  29. Haugland, R. P. (1999) Handbook of Fluorescent Probes and Research Chemicals. 7th ed. Molecular Probes Inc., Eugene, Oregon. (www.probes.com).

    Google Scholar 

  30. Wilkie, G. S. and Davis, I. (1998) High resolution and sensitive mRNA in situ hybridization using fluorescent tyramide amplification. Tech Tips Online t01458 (www.biomednet.com).

  31. Bliton, C., Lechleiter, J., and Clapham, D. E. (1993) Optical modifications enabling simultaneous confocal imaging with dyes excited by ultra-violet and visible-wavelength light. J. Microsc. 169, 15–26.

    CAS  Google Scholar 

  32. Chalfie, M. and Kain, S. (1998) Green Fluorescent Protein: Properties, Applications and Protocols. Wiley-Liss, New York.

    Google Scholar 

  33. Sullivan, K. F. and Kay, S. A. (1998) Green fluorescent proteins. Meth. Cell Biol. Vol. 58. Academic, San Diego, CA.

    Google Scholar 

  34. Karten, H. J. (1998) Information management of confocal microscopy images. Meth. Mol. Biol. 122, 403–420.

    Google Scholar 

  35. Brelje, T. C., Wessendorf, M. W., and Sorenson, R. L. 1993. Multicolor laser scanning confocal immunofluorescence microscopy: practical applications and limitations. Meth. Cell Biol. 38, 98–177.

    Google Scholar 

  36. Brown, N. L. (1998) Imaging gene expression using antibody probes. Meth. Mol. Biol. 122, 75–91.

    Google Scholar 

  37. Sharma, D. (1999) The use of an AOTF to achieve high quality simultaneous multiple label imaging. BioRad Tech. Note 04. www.microscopy.bio-rad.com38.

  38. Halder, G. and Paddock, S. W. (1998) Presentation of confocal images. Meth. Mol. Biol. 122, 373–384.

    Google Scholar 

  39. Bornfleth, H., Edelmann, P., Zink, D., Cremer, T., and Cremer, C. (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J. 77, 2871–2886.

    PubMed  CAS  Google Scholar 

  40. Centonze, V. E. and White, J. G. (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024.

    PubMed  CAS  Google Scholar 

  41. Fan, G. Y., Fujisaki, H., Miyawaki, A., Tsay, R.-K., Tsien R. Y., and Ellisman, M. H. (1999) Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Paddock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paddock, S.W. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol 16, 127–149 (2000). https://doi.org/10.1385/MB:16:2:127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:16:2:127

IndexEntries