Abstract
Recombinant proteins (r-proteins) are increasingly important in fundamental research and for clinical applications. As many of these r-proteins are of human or animal origin, cultivated mammalian cells are the host of choice to ensure their functional folding and proper posttranslational modifications. Large-scale transfection of human embryonic kidney 293 or Chinese hamster ovary cells is now an established technology that can be used in the production of hundreds of milligram to gram quantities of a r-protein in less than 1 mo from cloning of its cDNA. This chapter aims to provide an overview of large-scale transfection technology with a particular emphasis on calcium phosphate and polyethylenimine-mediated gene transfer.
Similar content being viewed by others
References
Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.
Blasey, H. D. and Bernard, A. R. (1994) Transient expression with COS cells on spinner scale, In Animal Cell Technology: Products of Today, Prospects for Tomorrow, (Spier, R. E., Griffiths, J. B., and Berthold, W., eds.) Oxford, UK, pp. 331–332.
Blasey, H. D., Aubry, J. P., Mazzei, G. J., and Bernard, A. R. (1996) Large scale transient expression with COS cells. Cytotechnology, 18, 183–192.
Blasey, H. D., Hovius, R., Vogel, H., and Bernard, A. R. (1999) Transient-expression technologies, their application and scale-up: 5-HT3 serotonin receptor case study. Biochem. Soc. Trans. 27, 956–960.
Geisse, S., Gram, H., Kleuser, B., and Kocher, H. P. (1996) Eukaryotic expression systems: a comparison. Protein Expr. Purif. 8, 271–282.
Geisse, S. and Kocher, H. P. (1999) Protein expression in mammalian and insect cell systems. Meth. Enzymol. 306, 19–42.
Ridder, R., Geisse, S., Kleuser, B., Kawalleck, P., and Gram, H. (1995) A COS-cell-based system for rapid production and quantification of scVv::IgC kappa antibody fragments. Gene 166, 273–276.
Jordan, M., Köhne, C., and Wurm, F. M. (1998) Calcium-phosphate mediated DNA transfer into HEK-293 cells in suspension: control of physicochemical parameters allows transfection in stirred media. Cytotechnology 26, 39–47.
Schlaeger, E. J., Legendre, J. Y., Trzeciak, A., et al. (1998) Transient transfection in mammalian cells: a basic study for an efficient and cost-effective scale up process. In: New Developments and New Applications in Animal Cell Technology: Proceedings of the 15th ESACT Meeting (Merten, O. W., Perrin, P., and Griffiths, B., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 105–112.
Schlaeger, E.-J. and Christensen, K. (1999) Transient gene expression in mammalian cells grown in serumfree suspension culture. Cytotechnology 30, 71–83.
Wurm, F. and Bernard, A. (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr. Opin. Biotechnol. 10, 156–159.
Capecchi, M. R. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488.
Graessmann, M., Menne, J., Liebler, M., Graeber, I., and Graessmann, A. (1989) Helper activity for gene expression, a novel function of the SV40 enhancer. Nucleic Acids Res. 17, 6603–6612.
Colosimo, A., Goncz, K. K., Holmes, A. R., et al. (2000) Transfer and expression of foreign genes in mammalian cells. Biotechniques 29, 314–324.
Schenborn, E. T. and Oler, J. (2000) Liposome-mediated transfection of mammalian cells. Methods Mol. Biol. 130, 155–164.
Haberland, A. and Bottger, M. (2005) Nuclear proteins as gene-transfer vectors. Biotechnol. Appl. Biochem. 42, 97–106.
Li, L. H., Shivakumar, R., Feller, S., et al. (2002) Highly efficient, large volume flow electroporation. Technol. Cancer Res. Treat. 1, 341–350.
Baldi, L., Muller, N., Picasso, S., et al. (2005) Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol. Prog. 21, 148–153.
Derouazi, M., Girard, P., Van, F. T., et al. (2004) Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng. 87, 537–545.
Durocher, Y., Perret, S., and Kamen, A. (2002) High-level and high-throughput recombinant protein proeuction by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 30, E9.
Geisse, S., and Henke, M. (2005) Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J. Struct. Funct. Genomics 6, 165–170.
Girard, P., Jordan, M., Tsao, M., and Wurm, F. M. (2001) Small-scale bioreactor system for process development and optimization. Biochem. Eng. J. 7, 117–119.
Girard, P., Derouazi, M., Baumgartner, G., et al. (2002) 100-liter transient transfection. Cytotechnology 38, 15–21.
Meissner, P., Pick, H., Kulangara, A., Chatellard, P., Friedrich, K., and Wurm, F. M. (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK-293-EBNA cells. Biotechnol. Bioeng. 75, 197–203.
Pham, P. L., Perret, S., Doan, H. C., et al. (2003) Large-scale transient transfection of serum-free suspension-growing HEK-293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol. Bioeng. 84, 332–342.
Schlaeger, E.-J., Kitas, E. A., and Dorn, A. (2003) SEAP expression in transiently transfected mammalian cells grown in serum-free suspension culture. Cytotechnology 42, 47–55.
Pham, P. L., Perret, S., Cass, B., et al. (2005) Transient gene expression in HEK293 cells: peptone addition posttranfection improves recombinant protein synthesis. Biotechnol. Bioeng. 90, 332–344.
Haldankar, R., Li, G., Zane, S., Baikalov, C., and Deshpande, R. (2006) Serum-free suspension largescale transient transfection of CHO cells in WAVE bioreactors. Mol. Biotechnol., this issue.
Jordan, M. and Wurm, F. (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33, 136–143.
Loyter, A., Scangos, G., Juricek, D., Keene, D., and Ruddle, F. H. (1982) Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy. Exp. Cell Res. 139, 223–234.
Orrantia, E. and Chang, P. L. (1990) Intracellular distribution of DNA internalized through calcium phosphate precipitation. Exp. Cell Res. 190, 170–174.
Orrantia, E., Li, Z. G., and Chang, P. L. (1990) Energy dependence of DNA-mediated gene transfer and expression. Somat. Cell Mol. Genet. 16, 305–310.
Coonrod, A., Li, F. Q., and Horwitz, M. (1997) On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4, 1313–1321.
Loyter, A., Scangos, G. A., and Ruddle, F. H. (1982) Mechanisms of DNA uptake by mammalian cells: fate of exogenously added DNA monitored by the use of fluorescent dyes. Proc. Natl. Acad. Sci. USA 79, 422–426.
Jordan, M., Schallhorn, A., and Wurm, F. M. (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 596–601.
Batard, P., Jordan, M., and Wurm, F. (2001) Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection. Gene 270, 61–68.
Atkinson, A. and Jack, G. W. (1973) Precipitation of nucleic acids with polyethyleneimine and the chromatography of nucleic acids and proteins on immobilised polyethyleneimine. Biochim. Biophys. Acta 308, 41–52.
Boussif, O., Lezoualc'h, F., Zanta, M. A., et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA, 92, 7297–7301.
Lungwitz, U., Breunig, M., Blunk, T., and Gopferich, A. (2005) Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60, 247–266.
Neu, M., Fischer, D., and Kissel, T. (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J. Gene Med. 7, 992–1009.
Mislick, K. A. and Baldeschwieler, J. D. (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. USA 93, 12,349–12,354.
Bieber, T., Meissner, W., Kostin, S., Niemann, A., and Elsasser, H. P. (2002) Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J. Control Release 82, 441–454.
Godbey, W. T., Wu, K. K., and Mikos, A. G. (1999) Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA 96, 5177–5181.
Remy-Kristensen, A., Clamme, J. P., Vuilleumier, C., Kuhry, J. G., and Mely, Y. (2001) Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim. Biophys. Acta 1514, 21–32.
Akinc, A., Thomas, M., Klibanov, A. M., and Langer, R. (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7, 657–663.
Pollard, H., Remy, J. S., Loussouarn, G., Demolombe, S., Behr, J. P., and Escande, D. (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem. 273, 7507–7511.
Lukacs, G. L., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., and Verkman, A. S. (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275, 1625–1629.
Lechardeur, D., Sohn, K. J., Haardt, M., et al. (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497.
Pollard, H., Toumaniantz, G., Amos, J. L., et al. (2001) Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J. Gene Med. 3, 153–164.
Berntzen, G., Lunde, E., Flobakk, M., Andersen, J. T., Lauvrak, V., and Sandlie, I. (2005) Prolonged and increased expression of soluble Fc receptors, IgG and a TCR-Ig fusion protein by transiently transfected adherent 293E cells. J. Immunol. Methods 298, 93–104.
Parham, J. H., Kost, T., and Hutchins, J. T. (2001) Effects of pCIneo and pCEP4 expression vectors on transient and stable protein production in human and simian cell lines. Cytotechnology 35, 181–187.
McMahan, C. J., Slack, J. L., Mosley, B., et al. (1991) A novel IL-1 receptor, cloned from B cells by mammalian expression, is expresed in many cell types. EMBO J. 10, 2821–2832.
Giri, J. G., Ahdieh, M., Eisenman, J., et al. (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830.
Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.
Gorman, C. M., Gies, D., McCray, G., and Huang, M. (1989) The human cytomegalovirus major immediate early promoter can be trans-activated by adenovirus early proteins. Virology 171, 377–385.
Cachianes, G., Ho, C., Weber, R. F., Williams, S. R., Goeddel, D. V., and Leung, D. W. (1993) Epstein-Barr virus-derived vectors for transient and stable expression of recombinant proteins. Biotechniques 15, 255–259.
DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H., and Calos, M. P. (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell Biol. 7, 379–387.
Lebkowski, J. S., Clancy, S., and Calos, M. P. (1985) Simian virus 40 replication in adenovirus-transformed human cells antagonizes gene expression. Nature 317, 169–171.
Lewis, E. D. and Manley, J. L. (1985) Repression of simian virus 40 early transcription by viral DNA replication in human 293 cells. Nature 317, 172–175.
Cho, M. S., Yee, H., and Chan, S. (2002) Establishment of a human somatic hybrid cell line for recombinant protein production. J. Biomed. Sci. 9, 631–638.
Cho, M. S., Yee, H., Brown, C., Mei, B., Mirenda, C., and Chan, S. (2003) Versatile expression system for rapid and stable production of recombinant proteins. Biotechnol. Prog. 19, 229–232.
Kunaparaju, R., Liao, M., and Sunstrom, N. A. (2005) Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol. Bioeng. 91, 670–677.
Liao, M. and Sunstrom, N. A. (2006) A transient expression vector for recombinant protein production in Chinese hamster ovary cells. J. Chem. Tech. Biotech. 81, 82–88.
Rosser, M. P., Xia, W., Hartsell, S., et al. (2005) Transient transfection of CHO-K 1-S using serum-free medium in suspension: a rapid mammalian protein expression system. Protein Expr. Purif. 40, 237–243.
Tait, A. S., Brown, C. J., Galbraith, D. J., et al. (2004) Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/DNA complexes in combination with microtubule disrupting anti-mitotic agents. Biotechnol. Bioeng. 88, 707–721.
Xia, W., Bringmann, P., McClary, J., et al. (2006) High levels of protein expression using different mammalian CMV promoters in several cell lines. Protein Expr. Purif. 45, 115–124.
Cockett, M. I., Bebbington, C. R., and yarranton, G. T. (1991) The use of engineered E1A genes to transactivate the hCMV-MIE promoter in permanent CHO cell lines. Nucleic Acids Res. 19, 319–325.
Mizuguchi, H., Hosono, T., and Hayakawa, T. (2000) Long-term replication of Epstein-Barr virus-derived episomal vectors in the rodent cells. FEBS Lett. 472, 173–178.
Heffernan, M. and Dennis, J. W. (1991) Polyoma and hamster papovavirus large T antigen-mediated replication of expression shuttle vectors in Chinese hamster ovary cells. Nucleic Acids Res. 19, 85–92.
Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B., and Schaffner, W. (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530.
Foecking, M. K. and Hofstetter, H. (1986) Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 45, 101–105.
Kim, D. W., Uetsuki, T., Kaziro, Y., Yamaguchi, N., and Sugano, S. (1990) Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Genet 91, 217–223.
Kim, S. Y., Lee, J. H., Shin, H. S., Kang, H. J., and Kim, Y. S. (2002) The human elongation factor 1 alpha (EF-1 alpha) first intron highly enhances expression of foreign genes from the murine cytomegalovirus promoter. J. Biotechnol. 93, 183–187.
McNeall, J., Sanchez, A., Gray, P. P., Chesterman, C. N., and Sleigh, M. J. (1989) Hyperinducible gene expression from a metallothionein promoter containing additional metal-responsive elements. Gene 76, 81–88.
Huang, M. T. and Gorman, C. M. (1990) Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 18, 937–947.
Dolph, P. J., Huang, J. T., and Schneider, R. J. (1990) Translation by the adenovirus tripartite leader: elements which determine independence from cap-binding protein complex. J. Virol. 64, 2669–2677.
Huang, W. and Flint, S. J. (1998) The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J. Virol. 72, 225–235.
Kaufman, R. J. (1985) Identification of the components necessary for adenovirus translational control and their utilization in cDNA expression vectors. Proc. Natl. Acad. Sci. USA 82, 689–693.
Logan, J. and Shenk, T. (1984) Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc. Natl. Acad. Sci. USA 81, 3655–3659.
Svensson, C. and Akusjarvi, G. (1985) Adenovirus VA RNAI mediates a translational stimulation which is not restricted to the viral mRNAs. EMBO J. 4, 957–964.
Sclimenti, C. R. and Calos, M. P. (1998) Epstein-Barr virus vectors for gene expression and transfer. Curr. Opin. Biotechnol. 9, 476–479.
Mackey, D. and Sugden, B. (1999) The linking regions of EBNA1 are essential for its support of replication and transcription. Mol. Cell Biol. 19, 3349–3359.
Tomiyasu, K., Satoh, E., Oda, Y., Nishizaki, K., Kondo, M., Imanishi, J., and Mazda, O. (1998) Gene transfer in vitro and in vivo with Epstein-Barr virus-based episomal vector results in markedly high transient expression in rodent cells. Biochem. Biophys. Res. Commun. 253, 733–738.
Ceccarelli, D. F. and Frappier, L. (2000) Functional analyses of the EBNA1 origin DNA binding protein of Epstein-Barr virus. J. Virol. 74, 4939–4948.
Gahn, T. A. and Sugden, B. (1995) An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein-Barr virus LMP gene. J. Virol. 69, 2633–2636.
Reisman, D. and Sugden, B. (1986) Trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol. Cell Biol. 6, 3838–3846.
Sugden, B. and Warren, N. (1988) Plasmid origin of replication of Epstein-Barr virus, oriP, does not limit replication in cis. Mol. Biol. Med. 5, 85–94.
Wu, H., Kapoor, P., and Frappier, L. (2002) Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. J. Virol. 76, 2480–2490.
Aiyar, A., Tyree, C., and Sugden, B. (1998) The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J. 17, 6394–6403.
Calos, M. P. (1998) Stability without a centromere. Proc. Natl. Acad. Sci. USA 95, 4084–4085.
Langle-Rouault, F., Patzel, V., Benavente, A., et al. (1998) Up to 100-fold increase of apparent gene expression in the presence of Epstein-Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids. J. Virol. 72, 6181–6185.
Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513–1523.
Stadler, J., Lemmens, R., and Nyhammar, T. (2004) Plasmid DNA purification. J. Gene Med. 6 Suppl 1, S54-S66.
Wright, J., Jordan, M., and Wurm, F. (2001) Extraction of plasmid DNA using reactor scale alkaline lysis and selective precipitation for scalable transient transfection. Cytotechnology 35, 165–173.
Schmid, G., Schlaeger, E. J., and Wipf, B. (2001) Non-GMP plasmid production for transient transfection in bioreactors. Cytotechnology 35, 157–164.
Chu, G. and Sharp, P. A. (1981) SV40 DNA transfection of cells in suspension: analysis of efficiency of transcription and translation of T-antigen. Gene 13, 197–202.
Song, W. and Lahiri, D. K. (1995) Efficient transfection of DNA by mixing cells in suspension with calcium phosphate. Nucleic Acids Res. 23, 3609–3611.
Girard, P., Porte, L., Berta, T., Jordan, M., and Wurm, F. (2001) Calcium phosphate transfection optimization for serum-free suspension culture. Cytotechnology 35, 175–180.
Lindell, J., Girard, P., Muller, N., Jordan, M., and Wurm, F. (2004) Calfection: a novel gene transfer method for suspension cells. Biochim. Biophys. Acta 1676, 155–161.
von Harpe, A., Petersen, H., Li, Y., and Kissel, T. (2000) Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control Release 69, 309–322.
Godbey, W. T., Wu, K. K., and Mikos, A. G. (1999) Poly(ethylenimine) and its role in gene delivery. J. Control Release 60, 149–160.
Boussif, O., Zanta, M. A., and Behr, J. P. (1996) Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 3, 1074–1080.
Durocher, Y., Perret, S., and Kamen, A. (2001) Recombinant protein production by transient transfection of suspension-growing cells. In: Recombinant Protein Production With Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. (Merten, O. W., Mattanovich, D., Lang, C., et al., eds.), Kluwer, Dordrecht, The Netherlands, pp. 329–335.
Wightman, L., Kircheis, R., Rossler, V., et al. (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3, 362–372.
Itaka, K., Harada, A., Yamasaki, Y., Nakamura, K., Kawaguchi, H., and Kataoka, K. (2004) In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. J. Gene Med. 6, 76–84.
Brunner, S., Furtbauer, E., Sauer, T., Kursa, M., and Wagner, E. (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol. Ther. 5, 80–86.
Geisse, S., Jordan, M., and Wurm, F. M. (2005) Large-scale transient expression of therapeutic proteins in mammalian cells. Methods Mol. Biol. 308, 87–98.
Dee, K. U., Shuler, M. L., and Wood, A. (1997) Inducing single-cell suspension of BTI-TN5B1-4 insect cells: I. The use of sulfated polyanions to prevent cell aggregation and enhance recombinant protein production. Biotechnol. Bioeng. 54, 191–205.
Jalkanen, M. (1987) Biology of cell surface heparan sulfate proteoglycans. Med. Biol. 65, 41–47.
Subramanian, S. V., Fitzgerald, M. L., and Bernfield, M. (1997) Regulated shedding of syndecan-1 and-4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272, 14,713–14,720.
Legendre, J. Y., Trzeciak, A., Bohrmann, B., Deuschle, U., Kitas, E., and Supersaxo, A. (1997) Dioleoylmelittin as a novel serum-insensitive reagent for efficient transfection of mammalian cells. Bioconjug. Chem. 8, 57–63.
Shi, C., Shin, Y. O., Hanson, J., Cass, B., Loewen, M. C., and Durocher, Y. (2005) Purification and characterization of a recombinant G-protein-coupled receptor, Saccharomyces cerevisiae Ste2p, transiently expressed in HEK293 EBNA1 cells. Biochemistry 44, 15,705–15,714.
Farrell, P. and Iatrou, K. (2004) Transfected insect cells in suspension culture rapidly yield moderate quantities of recombinant proteins in protein-free culture medium. Protein Expr. Purif. 36, 177–185.
Loomis, K. H., Yaeger, K. W., Batenjany, M. M., et al. (2005) InsectDirect System: rapid, high-level protein expression and purification from insect cells. J. Struct. Funct. Genomics 6, 189–194.
Tonini, T., Claudio, P. P., Giordano, A., and Romano, G. (2004) Transient production of retroviral- and lentiviral-based vectors for the transduction of Mammalian cells. Methods Mol. Biol. 285, 141–148.
Zufferey, R. (2002) Production of lentiviral vectors. Curr. Top. Microbiol. Immunol. 261, 107–121.
Grimm, D. (2002) Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 28, 146–157.
Merten, O. W., Geny-Fiamma, C., and Douar, A. M. (2005) Current issues in adeno-associated viral vector production. Gene Ther. 12, S51-S61.
Merten, O. W. (2004) State-of-the-art of the production of retroviral vectors. J. Gene Med. 6, S105-S124.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pham, P.L., Kamen, A. & Durocher, Y. Large-Scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34, 225–237 (2006). https://doi.org/10.1385/MB:34:2:225
Issue Date:
DOI: https://doi.org/10.1385/MB:34:2:225