Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A percolation approach to neural morphometry and connectivity

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

This article addresses the issues of neural shape characterization and analysis from the perspective of one of the main roles played by neural shapes, namely, connectivity. This study is oriented toward the geometry at the individual cell level and involves the use of the percolation concept from statistical mechanics, which is reviewed in an accessible fashion. The characterization of the neural cell geometry with respect to connectivity is performed in terms of critical percolation probability obtained experimentally while considering several types of geometrical interactions between cells, therefore directly expressing the potential for connections defined by each situation. Two basic situations are considered: dendrite-dendrite and dendrite-axon interactions. The obtained results corroborate the potential of the critical percolation probability as a valuable resource for characterizing, classifying, and analyzing the morphology of neural cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbib, M. (1998) The Handbook of Brain Theory and Neural Networks. The MIT Press Cambridge, MA.

    Google Scholar 

  • Ascoli, G. A., ed. (2002) Computational Neuroanatomy: Principles and Methods, Humana Press, Totowa, NJ.

    Google Scholar 

  • Ascoli, G. A., Krichmar, J. L., Nasuto, S. J., and Senft, S. L. (2001) Generation, description and storage of dendritic morphological data. Philosophical Transactions of the Royal Society, Series-B 356(1412): 1131–1145.

    Article  CAS  Google Scholar 

  • Bianchi, A. G. C., dos Santos, M. F., Hamassaki-Britto, D. E., and Costa, L. F. (2002) Inferring Shape Evolution. Pattern Recognition Letters (Accepted).

  • Cajal, S. R. (1989) Recollections of my life. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Cesar R. M. Jr., and Costa, L. F. (1997a) Application and Assessment of Multiscale Bending Energy for Morphometric Characterization of Neural Cells. Review of Scientific Instruments 68(5),:2177–2186.

    Article  CAS  Google Scholar 

  • Cesar R. M. Jr., and Costa, L. F. (1997b) Computer-Vision-Based Extraction of Neural Dendrograms. J Neurosci Meth 93:121–131.

    Article  Google Scholar 

  • Chklovskii, D. B. (2000) Optimal Size of Dendritic and Axonal Arbors in a Topographic Projection. J Neurophysiol 83: 2113–2119.

    PubMed  CAS  Google Scholar 

  • Coelho, R. C., di Gesu, V., Bosco, G. L., Tanaka, J. S., and Valenti, C. (2002) Shape-Based features for cat ganglion retinal cells classification. Journal of Real-Time Imaging Accepted.

  • Costa, L. F. (1995) Computer vision-based morphometric characterization of neural cells. Review of Scientific Instruments 66(7): 3770–3773.

    Article  CAS  Google Scholar 

  • Costa, L. F. (2000) Robust skeletonization through exact Euclidean distance transform and its application to neuromorphometry. Real Time Imaging 6: 415–431.

    Article  Google Scholar 

  • Costa, L. F. (2001) On neural shape and function. In: Proceedings of the First World Congress on Neuroinformatics, Vienna University of Technology, Vienna, Austria. pp. 397–410.

    Google Scholar 

  • Costa, L. F. and Cesar R. M. Jr., (2001) Shape Analysis and Classification. CRC Press Boca Raton, FL.

    Google Scholar 

  • Costa, L. F. and Velte, T. J. (1999) Automatic Characterization and Classification of Ganglion Cells From the Salamander Retina. J Comp Neurol. 404: 33–51.

    Article  Google Scholar 

  • Dam, A. M. (1978) The density of neurons in the human hipocampus. J Neuropath Appl Neurobiol 5: 249–264.

    Article  Google Scholar 

  • Duijnhouwer, J., Remme, M. W. H., van Ooyen, A., and van Pelt J. (2001) Influence of dendritic topology on firing patterns in model neurons. Neurocomputing 38–40: 183–189.

    Article  Google Scholar 

  • Falcao, A. X., Costa, L. F., and da Cunha, B.S. (2002) Multiscale Skeletons by image foresting transform and its application to neuromorphometry. Pattern Recognition 35(7): 1571–1582.

    Article  Google Scholar 

  • Fuxe, K. and Agnati, A. F. (1991) Volume transmission in the brain: novel mechanisms for neural transmission. Raven Perss, New York, NY.

    Google Scholar 

  • Haydon, P. G. and Drapeau, P. (1995) From contact to connection: early events during synaptogenesis. Trends Neurosci 18: 196–201.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C. and Segev, I. (1998) Methods in Neuronal Modeling: From Ions to Networks. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Krichmar, J. L., Nasuto, S. J., Scorcioni, R., Washington S.D., and Ascoli, G.A. (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941: 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Mainen, Z. F. and Sejnowski, T. J. (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589): 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Montague, P. R. and Friedlander, M. J. (1991) Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells. J Neurosci 11(5): 1440–1457.

    PubMed  CAS  Google Scholar 

  • Murre, J. M. J. and Sturdy, D. P. F. (1996) The connectivity of the brain: multi-level quantitative analysis. Biol Cybernet 73: 529–545.

    Google Scholar 

  • Nasuto, S. J., Krichmar, J. L., and Ascoli, G. A. (2001) A computational study of the relationship between neuronal morphology and electrophysiology in an Alzheimer’s Disease model. Neurocomputing 38–40: 1477–1487.

    Article  Google Scholar 

  • van Ooyen, A., Willshaw, D. J., and Ramakers, G. (2000) Influence of Dendritic Morphology on Axonal Competition. Neurocomputing 32: 255–260.

    Article  Google Scholar 

  • van Ooyen, A., Pakdaman, K., Houweling, A.R., van Pelt, J., and Vibert, J. F. (2001) Network connectivity changes through activity-dependent neurite outgrowth. Neural Proc Lett 3: 123–130.

    Article  Google Scholar 

  • van Pelt, J., van Ooyen, A., and Uylings, H. B. M. (2001) Network connectivity changes through activity-dependent neurite outgrowth. Anat Embryol 204: 255–265.

    Article  PubMed  Google Scholar 

  • Ramakers, G. J. A., Winter, J., Hogland, T. M., Lequin, M. B., van Hulten, P., van Pelt, J., and Pool C. W. (1998) Depolarization stimulates lamellipodia formation and axonal but not dendritical branching in cultured rat cerebral cortex neurons. Dev Brain Res 108(1–2): 205–216.

    Article  CAS  Google Scholar 

  • Sholl, D. A. (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87: 387–406.

    PubMed  CAS  Google Scholar 

  • Stauffer, D. and Aharony, A. (1994) Introduction to Percolation Theory. Taylor Francis, Bristol, PA.

    Google Scholar 

  • Stepanyants, A., Hof, P. R., and Chklovskii, D. B. (2002) Geometry and structural plasticity of synaptic connectivity. Neuron 34(2): 275–288.

    Article  PubMed  CAS  Google Scholar 

  • Szigeti, C., Fulop, Z., and Gulya, K. (2002) Branching-pattern analysis of the dendritic arborization in the thalamic nuclei of the rat brain. Acta Biologica Hungarica 53: 177–186.

    Article  PubMed  Google Scholar 

  • Toris, C. B., Eiesland, J. L., and Miller, R. F. (1995) Morphology of ganglion cells in the neotenous tiger salamander retina. J Comp Neurol 352: 535–559.

    Article  PubMed  CAS  Google Scholar 

  • Vetter, P., Roth, A., and Hausser, M. (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85(2): 926–937.

    PubMed  CAS  Google Scholar 

  • Wassle, H., Boycott, B. B., and Illing, R. B. (1981) Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc Royal Soc Lond. B 212: 177–195.

    Article  Google Scholar 

  • Xia, W. and Thorpe, M. F. (1988) Percolation properties of random ellipses. Physical Review A 38(5): 2650–2656.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano da Fontoura Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Fontoura Costa, L., Manoel, E.T.M. A percolation approach to neural morphometry and connectivity. Neuroinform 1, 65–80 (2003). https://doi.org/10.1385/NI:1:1:065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:1:1:065

Index Entries