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Abstract—Passwords are used for user authentication by
almost every Internet service today, despite a number of well-
known weaknesses. Numerous attempts to replace passwords
have failed, in part because changing users’ behavior has proven
to be difficult. One approach to strengthening password-based
authentication without changing user experience is to classify
login attempts into normal and suspicious activity based on a
number of parameters such as source IP, geo-location, browser
configuration, and time of day. For the suspicious attempts,
the service can then require additional verification, e.g., by
an additional phone-based authentication step. Systems working
along these principles have been deployed by a number of Internet
services but have never been studied publicly. In this work, we
perform the first public evaluation of a classification system for
user authentication. In particular:

(i) We develop a statistical framework for identifying suspicious
login attempts.

(ii) We develop a fully functional prototype implementation that
can be evaluated efficiently on large datasets.

(iii) We validate our system on a sample of real-life login data
from LinkedIn as well as simulated attacks, and demonstrate
that a majority of attacks can be prevented by imposing
additional verification steps on only a small fraction of users.

(iv) We provide a systematic study of possible attackers against
such a system, including attackers targeting the classifier
itself.

I. INTRODUCTION

Almost every Internet service today authenticates its users
using passwords: each user is associated with a short block
of text that is supposedly known only to that user. Advan-
tages to this system are that passwords are nearly universally
understood by users and that they are well supported by
current infrastructures. However, passwords in practice have
numerous security flaws that have been well documented in
both the research literature and the popular press: users choose
simple and/or easy-to-guess passwords; users reuse passwords
across services, meaning that a compromise of accounts on
one service leads to compromise of accounts on many other

services; users are often tricked into revealing their passwords
to attackers (e.g., via “phishing”); and modern password-
cracking tools have become very powerful—the best has been
reported to guess up to 2.7 billion passwords per second on a
single GPU [52].

Many innovative techniques have been proposed to deal
with these problems, and several have been implemented in
practice. One common proposal is two-factor authentication,
by which the user must confirm that she has possession of
another credential linked to the account. This second factor is
typically a hardware token, an authentication app (e.g. [30]),
or, with reduced security benefits, a mobile phone number or
an email address. Most major websites (e.g. Google, Facebook,
LinkedIn, and Twitter) now offer a two-factor authentication
solution. However, two-factor authentication, being an opt-in
process, suffers from low adoption rates and does little to
thwart a large-scale attack on an Internet service.

Biometric authentication techniques, including fingerprint
and face recognition [39], [34], and typing dynamics [28],
[41], [32], [19], have also been investigated as an alternative
to password-based authentication, but limited performance on
very large numbers of users and risks for privacy leaks have
actually slowed down its adoption in large online services.

Instead of replacing passwords, more recently there has
been significant effort to increase the security of password-
based authentication. Examples include several methods for
increasing the entropy of users’ passwords [35], [33], [11] as
well as methods for discouraging reuse across websites [35],
[27]. Most of these proposals (discussed in more detail in
Sect. VII) require changing user behavior, and to date none
has achieved widespread adoption.

Given the difficulty of changing users’ behavior, in practice
one must assume that any password can easily fall into the
hands of an attacker. Many websites thus use a different
approach: to impose extra friction on authentication attempts
they determine to be suspicious. For example, between entering
a correct password and proceeding into the site, a service can
require a user to solve a CAPTCHA,1 verify an email address,
receive an SMS message, or answer security questions. For
maximum security a site could pose such “challenges” on
every login attempt; however, this level of friction would be
highly detrimental to the site’s level of engagement, as a large

1A CAPTCHA, i.e., a Completely Automated Public Turing test to tell
Computers and Humans Apart, is a challenge-response test used to verify
whether the user is a human being or a bot.
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percentage of legitimate users will be unwilling or unable to
solve these challenges. There is thus a need to classify the
level of suspiciousness of any authentication attempt and only
block or challenge the most suspicious.

The classification of login attempts (e.g., into three tiers
good/suspicious/bad) is derived from the data available at the
time of the login, including source IP address, geo-location,
operating system and browser configuration, the account’s
patterns of usage, and more. However, the details of these
derivations are generally not disclosed by the sites employing
such classifiers. Consequently, any public evaluation and com-
parison is missing. In addition, these defenses have not been
tested for their resistance to attacks targeting the classifiers
themselves, nor does there exist a systematic treatment of
attacks against such a login service. The lack of public
benchmarks, and even any baseline performance, makes it
difficult to compare and evaluate systems.

Our contribution. In this work we provide the first public
study of the classification of login attempts, which we call
reinforced authentication. We advocate a “security by design”
approach, avoiding basing the security of the classifier on the
secrecy of its design. This is important because recent work
on the behavior of classifiers in the presence of attacks (so-
called adversarial machine learning) has shown that the state
of a classifier can be reconstructed by repeatedly querying the
classifier, questioning the validity of an approach based on
“security by obscurity” [3], [5], [6], [31]. These results can
also be used to harden classifiers against these attacks, without
requiring secrecy of the design.

More concretely, our contributions are as follows:

• We develop a statistical framework for identifying sus-
picious authentication attempts. We begin with a likeli-
hood ratio test and show how the desired ratio can be
approximated in the presence of sparse data. Our main
formula (7) can be computed even in the absence of
labeled account takeover data. When such labeled data is
present, we can use the terms in the formula as features
in a logistic regression model to achieve greater accuracy.

• We develop a prototype implementation of the described
system. The main contribution here is smoothing tech-
niques to handle cases where there is no data, such
as when a user logs in from a previously unseen IP
address. Our solution supports the intuition that the level
of suspiciousness should increase as the user gets farther
away from a previously seen location. We demonstrate
that the proposed system is efficient enough for a practical
large-scale deployment.

• We validate our proposal on a sample of real-life user
login data from LinkedIn. When using six months of
history and only two features (IP address and useragent),
we achieve AUC 0.96 and find that the most suspicious
10% of login attempts include 89% of labeled account
takeover attempts.

• Inspired by recent work in the area of adversarial machine
learning [3], [5], [6], [31], we classify potential attacks
against such a classifier, taking into account the specific
challenges of an authentication system. This classification

allows us to assess our system’s security by hypothesizing
potential attack scenarios and simulating attacks. In a
number of experiments, we demonstrate the efficiency of
various feature combinations and evaluate the effective-
ness of attackers trying to evade the classifier.

This work is not intended to replace alternative authen-
tication methods such as two-factor authentication, but is
orthogonal and can be applied, in principle, to any kind of login
procedure. We expect it to be particularly helpful in securing
the large majority of accounts that are unable or unwilling to
use stronger authentication mechanisms.

II. REINFORCED AUTHENTICATION

The underlying idea behind reinforcing user authentication
is to exploit complementary information beyond the validation
of user credentials. This information can be extracted from
the HTTP session logs of authentication sessions established
between the user and the web server (including, e.g., the IP
address, useragent, timestamp, and cookies) and then compared
against data available from the user’s login history through a
carefully designed statistical machine-learning approach. The
principal result of this section is Eq. (7), which gives a scoring
function that can be computed using only per-user and global
login history and asset reputation systems; in particular, labeled
account compromise data is not required for the basic scoring
function.

Let us denote with u ∈ U a given user account, with
x = (x1, . . . , xd) ∈ X a d-dimensional set of feature values
characterizing a login attempt (e.g., timestamp, IP address,
browser, etc.), and with y ∈ Y = {L,A} the class label of
legitimate login (L) or attacks (A). In the sequel, uppercase
letters will be used to denote random variables (r.v.), and
lowercase letters to denote the corresponding realizations; for
example, if the r.v. X denotes the “IP address”, then x will
correspond to a specific IP address (e.g., 127.0.0.1). We assume
that for each account, login samples of either class are gener-
ated according to an underlying (though unknown) probability
distribution p(X, U, Y ), for which we are only given a set of
(i.i.d.) samples D = {xi, ui, yi}ni=1 representing the available
login history for each user. We also assume that in all cases
the provided credentials are correct. If the provided credentials
are wrong, then the login attempt is rejected regardless of the
output of the reinforced authentication module.

Given this notation, reinforced authentication can be for-
mulated as the task of learning a classification function f :
X × U 7→ Y that, for each set of features x and user u,
accurately predicts whether the corresponding login attempt is
a legitimate login, or an account takeover. For compactness,
we will denote this function as fu(x) ∈ {L,A}.

If the underlying distribution p were known, the decision
function yielding the minimum probability of wrong predic-
tions (i.e., minimizing generalization error or risk) would be
given by the so-called Maximum-A-Posteriori (MAP) crite-
rion:

arg max
y∈Y

p(Y = y|X = x, U = u) . (1)

For two classes, the MAP criterion amounts to deciding for
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Y = A if
p(Y = A|X = x, U = u)

p(Y = L|X = x, U = u)
> 1, (2)

and for Y = L otherwise. Applying Bayes’ Theorem to the
numerator and denominator of (2) gives
p(Y = A|X = x, U = u)

p(Y = L|X = x, U = u)
=
p(x, u|Y = A)

p(x, u|Y = L)

p(Y = A)

p(Y = L)
,

(3)
and noting that the prior probabilities are not dependent on x
and u, the MAP criterion becomes

p(x, u|Y = A)

p(x, u|Y = L)︸ ︷︷ ︸
gu(x)

≶
p(Y = L)

p(Y = A)︸ ︷︷ ︸
θ

; (4)

that is, decide for class Y = A if gu(x) > θ, and for
Y = L otherwise. The threshold θ can be generally adjusted
on a validation set to balance the trade-off between the rate
of misclassified legitimate logins (false positives, FP) and the
attack detection rate (true positives, TP). This rule is is widely-
known in biometric identity verification as likelihood ratio,
or Neyman-Pearson criterion [43]. According to the Neyman-
Pearson lemma, for a given FP rate, one can select θ such that
the likelihood ratio test maximizes the detection rate (TP).
If the probability distributions p(A|x, u) and p(L|x, u) are
exactly known, this rule is optimal, i.e., it yields the maximum
detection rate (and no other test outperforms this one in terms
of statistical power). However, in practice the aforementioned
probability distributions are not known, and they have to be
estimated from the available data D. The performance of
the likelihood ratio test will thus depend on how well such
distributions are estimated.

Finally, if the confidence score gu(x) is too close to the
threshold, i.e., the prediction is not very confident, then one
may consider requesting additional information from the user
to validate the login. For example, we may request the user to
verify a phone number or email address or to provide some
personal information that can be validated by the system (e.g.,
date of birth). In this case, one should consider two different
thresholds θu > θd such that:

fu(x) =


A , if gu(x) > θu ,

F , if θd ≤ gu(x) ≤ θu ,
L , if gu(x) < θd ,

(5)

where F represents the case in which we should request
further information. This scenario is usually referred to as
classification with reject option [20].

A. Working Assumptions

As our system has to deal with large amounts of sparse
data, i.e., a large number of login attempts per user with
different, rare combinations of features, like IP address and
useragent, we make here some simplifying assumptions to keep
the computational complexity of our approach manageable,
and allow exploiting information provided from third-party
services, e.g., IP reputation systems.

First, by noting that p(x, u|y) = p(x|u, y)p(u|y), the left-
hand-side term of Eq. 4 can be rewritten as:

gu(x) =
p(x|u,A)

p(x|u,L)

p(u|A)

p(u|L)
. (6)

Since data is sparse, we have few samples for a given set
of feature values conditioned to each class; e.g., observing
the same pair of IP and useragent for a given user is a rare
event, even if the login is legitimate. Thus, providing a reliable
estimate of the term p(x|u, y) for either class is not always
possible. To overcome this limitation, we assume indepen-
dence among features, i.e., p(x) =

∏d
k=1 p(x

k). This is a
well-known practice when estimating multivariate probability
distributions from sparse data, e.g., for text categorization and
spam filtering [49]. Furthermore, we assume that, in an attack
attempt, the identity u of the user being attacked is independent
of the value of the feature set x used by the attacker, i.e.,
p(x|u,A) = p(x|A). This is reasonable in indiscriminate
attacks (i.e., attacks not targeting a specific user), as we can
assume that the attacker will not be able to determine the
values of x used by different users and adjust the values (x, u)
accordingly.

According to the aforementioned assumptions, we can
write p(x|u,A) =

∏d
k=1 p(x

k|A) and similarly for p(x|u,L).
Furthermore, by Bayes’ Theorem we can substitute p(xk|A) =
p(A|xk)p(xk)/p(A). This allows us to exploit feature reputa-
tion systems to estimate the term p(xk|A); e.g., an external
reputation system that labels certain IP addresses as belonging
to botnets, or certain useragents as being command-line tools.
Then, by disregarding the terms dependent on p(A) (which
can be compensated for by adjusting the decision threshold
θ), one yields:

gu(x) =

(
d∏
k=1

p(A|xk)
p(xk)

p(xk|u,L)

)
p(u|A)

p(u|L)
. (7)

B. Probability Estimation

Eq. 7 gives a formula that we can use to compute a score
gu(x) for any given login attempt. We now explain how to
estimate each term of gu(x) from data.

p(A|xk). Ideally, one may obtain this probability for every
feature value xk from the training data. In practice, there
are not sufficient examples of attacks for each xk, so we
can use reputation systems as proxies. These may be built
internally from sitewide abuse data (i.e., not just account
takeover attempts) or may be sourced from a third party (see,
e.g., [54]). An IP reputation system will assign a “reputation
score” to each IP address that indicates how likely the IP
address is to be abusive. The reputation score can then be
normalized to yield a suitable probability estimate. The system
can also use the reputation of the Internet Service Provider
(ISP) that the IP belongs to, to improve the reputation score.
A similar construction can be applied to other fine-grained
features.

p(u|A). This is the probability that user u is attacked, given
that we observed an attack. Since we may not have enough
data to estimate this probability in a reliable manner, it may be
entirely reasonable to assume that all users are equally likely to
have their password compromised; e.g., this could be the case
in an attack using a username/password list from a third-party
site. A more sophisticated approach may consist of estimating
which users are most valuable to attackers, i.e., most likely
to be targeted by an attack. In a social network signals like
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connections, followers, and amount of content posted could be
used to inform such a model.

p(u|L). This is simply the probability that user u is logging
in to the site, given that the login is legitimate. We can take
the proportion of all legitimate logins that belong to user u,
possibly with some time decay.

p(xk), p(xk|u,L). As a basic estimate we can compute the
proportion of times in history that we have seen xk as the value
of feature Xk; this computation can be applied globally or on
a per-user, class-conditional basis. For a more sophisticated
model we can discount older events, e.g., using an exponential
decay model.

We note that under the above assumptions, we do not
directly use any labeled account compromise events in the
computation of gu(x) beyond what is input to the reputation
scores. This property could be useful to a new service that is
acquiring users quickly and does not have a reliable system of
labeling compromised accounts; such a service would also be
likely to use external reputation data.

C. Smoothing

As we deal with sparse data, it is likely that some variable
X may never take on a specific value x; for example, a user
may log in from an IP address that we have not observed in that
user’s history or even in the global history. The corresponding
maximum likelihood estimates (MLEs) of p(x|u,L) and p(x)
(i.e., their relative frequencies) will thus be zero, yielding
an undefined value for Eq. (7). To overcome this limitation,
we exploit a well-known technique known as smoothing,
originally proposed to deal with probability estimation in n-
gram language models and, more generally, in the presence of
sparse data [14].

The underlying idea of smoothing is to decrease the
probability mass of known events in order to reserve some
probability to unseen events. To this end, we adjust our
estimates as:

p0(x) =

{
c(x)
N

(
1− M

N+M

)
if c(x) > 0 ,

1
N+M otherwise ,

(8)

where c(x) is the number of times we have seen x in our
history and N =

∑
x c(x) is the total number of logins

(events). Essentially, we discount the ML estimate c(x)/N by
adding M “unseen” events and giving each of them probability
mass 1/(N+M). For instance, if we have seen N = 9 logins,
each from a different IP address, and we assume M = 3
unseen IPs, then the smoothed probability p0 of logging in
from an unknown IP will be 1/12, equal to the probability of
logging in from any other known IP (instead of having 0 and
1/9 for the unseen and known IPs, respectively).

However, we would like to use the fact that IP addresses
are aggreated into larger groupings such as ISP and country to
give higher probabilities to unseen IPs that come from known
ISPs or countries, rather than considering all of them equally
likely. Accordingly, we can estimate p(x) as:

pk(x) =
∑

h′
k∈Hk

p(x|h′k)p(h′k) = p(x|hk)p(hk) , (9)

where h′k represents a conditioning event, taking values in Hk.
The index k corresponds to the level of the observation, with
higher values denoting more granular levels; e.g., level k = 1
may correspond to countries, and level k = 2 to ISPs. The level
k = 0, discussed above, involves all login attempts, and we
thus name it the world level. In addition, we create a top level
` (` = 3 in our example) representing the IP itself, in which
case h` = x. Notice that, if IP x belongs to ISP (or country)
hk, the probability of seeing x coming from a different ISP
(or country) h′k is zero, and this is why the marginalization
in (9) yields pk(x) = p(x|hk)p(hk).

We can now smooth p(x|hk) by defining pk(x|hk) analo-
gously to Eq. (8), replacing N by the number of logins Nhk

seen from the ISP (or country) hk, and M by the number Mhk

of unseen IPs from ISP (or country) hk. The ML estimate of
p(hk) is kept unsmoothed, and it is thus zero for unseen ISPs
(or countries).2 In this way, higher probabilities are assigned
to unseen IPs coming from known ISPs or countries; Fig. 1
provides a concrete example.

In order to have a consistent number of unseen IPs at each
level k, for 0 ≤ k < ` we recursively define

Mhk
=

∑
hk+1∈hk

Mhk+1
+ µhk

,

where µhk
is the number of unseen IPs belonging to no known

sub-entity of hk. (To set the base case for the recursion we
define Mh`

= 0 for all IPs h`, as there are no unseen IPs
belonging to an IP.) If we assume one unseen IP for each
ISP, one unseen ISP per country, and one unseen country (i.e.,
µhk

= 1 for any hk) then the world-level M will be equal
to the number of known ISPs plus the number of known
countries, plus one. A similar strategy can be considered
for browsers’ useragents, considering higher-level groupings
like operating system, browser family, and the corresponding
versions.

According to the aforementioned procedure, we can com-
pute estimates of p(x) at different levels k, depending on the
conditioning event hk at level k. We then consider two distinct
procedures to aggregate these different estimates, namely,
backoff and interpolation, inspired from the homonymous
techniques for n-gram probability estimation [14].

Backoff. The basic idea for backoff smoothing is that if there
are no observations of an IP, we “back off” by using data from
the ISP to which the IP belongs; if there are no observations
of that ISP we back off to the country, etc. Technically, we
combine the `+1 probability estimates pk(x), for k = 0, . . . , `
as follows:

pbo(x) =


α`p`(x) if c(h`) > 0 ,

α`−1p`−1(x) if c(h`−1) > 0 ,

. . .

α0p0(x) otherwise.

(10)

Since granularity increases with k (e.g., for IP addresses
k = 0 is the world level k = ` is the IP level), Eq. (10)
tells us to use the estimate from the most granular level for

2Note that, if smoothing is not applied, all the estimates pk(x) will be equal
to the ML estimate p(x).
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C1(5)& C2(3)& C3(1)&

ISP1(3)& ISP2(2)& ISP3(1)& ISP4(2)& ISP5(1)&

IP1(1)& IP2(1)& IP3(1)& IP4(1)& IP5(1)& IP6(1)& IP7(1)& IP8(1)& IP9(1)&

p(ISP1) = 3
9

,   p(IP1) = 1
9

p(IP1) = p(IP1 | ISP1)p(ISP1) = 1
3
×

3
9
=

1
9

if  p(unseen IP) = 1
10

,   p(IPi ) =
1

10
if  unseen IP comes from ISP1,  we smooth p(IP | ISP) and keep p(ISP) constant,

p(unseen IP) = p(IP1) = p(IP1 | ISP1)p(ISP1) = 1
4
×

3
9
=

1
12

if  unseen IP comes from ISP6

p(unseen IP) = p(IP9 ) = p(IP9 | ISP6 )p(ISP6 ) = 1
2
×

1
9
=

1
18

C1(5)& C2(3)& C3(1)&

ISP1(3)& ISP2(2)& ISP3(1)& ISP4(2)& ISP5(1)&

IP1(1)& IP2(1)& IP3(1)& IP4(1)& IP5(1)& IP6(1)& IP7(1)& IP8(1)& IP9(1)&

C1(5)& C2(3)& C3(1)&

ISP1(3)& ISP2(2)& ISP3(1)& ISP4(2)& ISP5(1)&

IP1(1)& IP2(1)& IP3(1)& IP4(1)& IP5(1)& IP6(1)& IP7(1)& IP8(1)& IP9(1)&

ISPu&

IPu&
IPu&IPu& IPu& IPu& IPu&

ISPu&

IPu&

ISPu&

IPu&

Cu&

ISPu&

IPu&

Fig. 1: An example of smoothing probability estimates for unseen IPs, involving 3 countries (C), 5 ISPs (ISP), and 9 known IPs
(IP). Unseen events are shown in red. The counts c(·) for each element are reported in parentheses; e.g., ISP

(2)
4 means that ISP4

has been seen twice. Assuming one unseen IP per known ISP, unknown ISP and known country, and both unknown ISP and
country, we have a total number M = 5+3+1 = 9 of unseen IPs (denoted with IPu). According to Eq. (8), given N = M = 9,
for an unseen IP, p0(x) = 1

18 . For country-based estimates (k = 1), an unseen IP coming from C1 has p1(x) = 1
8 ×

5
9 (the

first term is the smoothed estimate p(x|hk) including unseen events), while if it comes from C3, p1(x) = 1
3 ×

1
9 . For ISP-based

estimates (k = 2), if the unseen IP comes from ISP1, then p2(x) = 1
4 ×

3
9 . This value is higher than the probability of an unseen

IP from ISP5, i.e., p1(x) = 1
2 ×

1
9 . For an unseen IP from ISP1, we have: p2(x) = 1

4 ×
3
9 > p1(x) = 1

8 ×
5
9 > p0(x) = 1

18 .
However, for an unseen IP from both unseen ISP and country, we have that p0(x) = 1/18, and p1 = p2 = 0.

which sample data exists. Here the coefficients α0, . . . , α` are
normalization factors that can be computed offline to ensure
that

∑
x pbo(x) = 1 (see, e.g., [14] for details).

Recall from our discussion of smoothing above, we have
pk(x) = p(x|hk)p(hk), with p(x|hk) the smoothed estimate
of seeing the IP x in the entity hk, and p(hk) the unsmoothed
estimate of seeing the entity hk. Our definition of pbo(x) in
(10) implies that in the two extreme cases we use two different
IP-level estimates: if IP x has been seen, then we use the
unsmoothed estimate p`(x) = p(h`) = c(x)/N , while if x
comes from an unseen country, then we use the smoothed
estimate p0(x) = p(x|world) = c(x)/(N +M).

Linear Interpolation. Another method for aggregating the
different estimates pk(x) is to linearly combine them as:

plinear(x) =
∑̀
k=0

λkpk(x) , (11)

where the coefficients {λk}`k=0 are learned using a held-
out set to maximize the likelihood over unseen data, under
the constraint that

∑`
k=0 λk = 1 (to ensure that the total

probability mass sums up to one). The detailed procedure is
given as Algorithm 1.

Similar procedures can be exploited for events conditioned
to a given user and to the class of legitimate logins, i.e.,
to estimate p(x|u,L), restricting the available counts to the
conditioning events.

Algorithm 1 Computing interpolation coefficients

Input: A training set T described as a set of vectors {~tj}.
Each ~tj is an `+ 1-dimensional vector corresponding to a
legitimate login event. The entries of ~tj are the probabili-
ties pk(x) for that event, as computed in Equation (9).

Output: Coefficients {λk}`k=0, s.t.
∑
k λk = 1.

1: Define a function σ that is a bijection between R` and the
open `-dimensional simplex Σ` ⊂ R`+1.

2: Define a function LT (~v) : R` → R by

LT (~v) = −
∑
j

log(~tj · σ(~v)) (12)

3: Use a numerical algorithm to compute the vector ~v0 ∈ R`
that maximizes LT (~v).

4: Compute ~λ← σ(~v0) ∈ R`+1.
5: Return ~λ.

D. Feature Weighting

The independence assumptions used to derive our scoring
function gu(x) (Eq. 7) lead to a formula in which all features
have equal weight. However, given labeled account compro-
mise data we may find that certain features are more important
in detecting account compromises. To incorporate this property
we can use a modified scoring function

ĝu(x) =

(
d∏
k=1

p(A|xk)αk
p(xk)βk

p(xk|u,L)γk

)
p(u|A)δ

p(u|L)ε
, (13)
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where the αk, βk, γk, δ, ε are real-valued weights. We can learn
the values of these weights from the labeled training data by
running a logistic regression classifier; specifically, we regress
the sample labels against log(ĝu(x)).

III. ATTACK MODEL AND SCENARIOS

We exploit an attack model defined in [6], [5], which
builds on a popular taxonomy of potential attacks against
machine learning proposed in [3], [2], [31]. This model helps
identify potential attack scenarios that may be incurred by
the learning algorithm during operation, and may suggest
some simple countermeasures to mitigate their impact. The
attack taxonomy categorizes attacks along three main axes:
the security violation, the attack specificity and the attack
influence. Based on these characteristics, the aforementioned
attack model allows one to make explicit assumptions on the
attacker’s goal, knowledge of the attacked system, capability
of manipulating the input data, and to devise a corresponding
attack strategy.

Attacker’s Goal. The goal is defined based on the following
two characteristics:

(g.i) The desired security violation. The attacker can affect
system integrity (if account takeovers are undetected),
availability (if legitimate users can no longer access the
system), or privacy (if confidential information about the
system users is leaked) [3], [31], [6].

(g.ii) The attack target. The attack can be targeted (if the
attack targets a specific user or set of users, i.e., if
the attacker aims to have some specific samples mis-
classified), or indiscriminate (if any user account is
potentially subject to the attack, i.e., any sample can be
misclassified) [3], [31], [6].

Attacker’s Knowledge. The attacker may have different levels
of knowledge of the learning system [6], [5], [31] and, in
particular, about:

(k.i) the training data;
(k.ii) the feature set, i.e., what features are used (e.g., IP and

useragent);
(k.iii) the learning algorithm, i.e., the decision function gu(x)

(Eq. 7);
(k.iv) its (trained) parameters, i.e., the probability estimates

involved in the computation of gu(x);
(k.v) feedback on decisions (e.g., the attacker may observe

whether a login attempt is classified as legitimate, suspi-
cious, or malicious).

In authentication problems, it is also worth remarking that the
attacker may know the user credentials, or exploit techniques to
get them (e.g., information leakage from the targeted website
or database).

Attacker’s Capability. It consists of defining:

(c.i) the attack influence, i.e., whether the attacker can ma-
nipulate only testing data (exploratory), or also training
data (causative) [3], [31], [6]; and

(c.ii) how samples (and the corresponding features) can
be modified. This aspect should be defined based on

application-specific constraints; e.g., in the authentication
setting, an attacker may modify geolocation features if
she can use a different IP address or gain access to a
botnet.

Attack Strategy. This amounts to defining how the attacker
implements the attack, based on the hypothesized goal, knowl-
edge, and capabilities. In its most general sense, the attack
strategy can be formulated as an optimization problem that in
the end tells the attacker how to manipulate data to reach the
given goal.

Attack Scenarios. Two main attack scenarios are often consid-
ered in the field of adversarial machine learning, i.e., evasion
and poisoning [4], [7], [57], [3], [2], [31], [6], [5]. In an
evasion attack, the attacker manipulates malicious samples at
test time to have them misclassified as legitimate by a trained
classifier, without having influence over the training data.
This corresponds to an indiscriminate integrity violation. In
a poisoning attack, the goal is to maximize classification error
at test time by injecting poisoning samples into the training
data. Influence in the poisoning setting is mainly on training
data, and the goal is to cause an indiscriminate, availability
violation.

While understanding the impact of poisoning on our system
may be of interest, it may be very difficult for an attacker
to get access to the training data (i.e., the login history) and
actively manipulate it. On the contrary, evasion attacks are
more likely to occur in practical settings, as the attacker can
more easily manipulate data at test time (e.g., by changing
the IP address or the browser’s useragent) to increase chances
of evading detection by our reinforced authentication module.
For this reason, in this work we focus on the simulation of
evasion attacks against our reinforced authentication system,
as detailed in the next section, and leave the investigation of
poisoning scenarios to future work.

A. Evasion Attacks

According to the framework discussed above, we define
here several evasion settings considering attackers that have
different knowledge of the attacked system and capabilities of
modifying the way account takeovers are performed.

1) Attacker’s Goal: In the context of user authentication,
the goal of an evasion attack is to manipulate some features
(e.g., the IP or browser’s useragent) to have account takeover
attempts misclassified as legitimate. Accordingly, the security
violation amounts to an integrity violation (i.e., log in with
the credentials of another user without being caught), while
the attack specificity can be targeted (if the goal is to log in to
a specific account, i.e., attack a specific user or set of users),
or indiscriminate (if the goal is to log in to any account).

2) Attacker’s Knowledge: We can define different kinds
of attackers based on different assumptions about their level
of knowledge of the attacked system. We consider here three
distinct cases, corresponding to increasing levels of knowledge:
the no-knowledge attacker, the known-password attacker, and
the phishing attacker.

No-knowledge attacker. This is the least skilled attacker. She
does not know any of the system details or implementation,
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and does not even know any user credentials. An example
is an attacker trying the password “password” against a list
of possible usernames. Should one of the username/password
pairs happen to be valid, this instance then falls into the known-
credentials case.

Known-credentials attacker (KCA). In this case, it is as-
sumed that the attacker has access to the full credentials for a
user, and is a powerful threat to any password-based system.
Without further security measures, there is no security left
and the attacker can just access the account. This attacker is
characterized by the following points:

• He knows full credentials for one or many users of a site.
Usually, he knows username and password for a user on
a site not protected by two-factor authentication.

• He may have a single (or a small number) of credentials
(targeted KCA), or he may have access to a large number
of credentials (such as a leaked list unknown to the site
owner), and be interested in breaking into any account
(indiscriminate KCA).

Phishing attackers. The most skilled attackers considered here
are those we refer to as phishing attackers. They may have
information beyond the credentials about the user in question;
in particular, additional information could be obtained in one
of the following ways:

• The attacker may personally know the victim and thus
may know where the user is located and which de-
vice/OS/browser the user typically uses.

• In a sophisticated phishing attack, the attacker may also
obtain more detailed information about the user, such as
useragent string and IP address.

In terms of the points (k.i)-(k.v) discussed in Sect. III, in
these three cases scenarios the attacker has different levels
of knowledge of the training data and the features used,
potentially gathered by querying the targeted classifier and
looking at the provided feedback on its decisions, while she
does not exploit any knowledge on how the features are
combined by the classifier.

3) Attacker’s Capability: In the evasion setting, the attacker
can only manipulate data during system operation, while she
can not modify the training data. Each feature value of a
login attempt can be manipulated depending on its nature, and
on specific assumptions. In the following, we thus consider
potential manipulation of the IP address and the browser’s
useragent. Similar reasoning should be extended to other
features, if considered.

IP address. The attacker can change her IP address by using a
remote proxy server or a botnet. If she attempts to log in as the
targeted user and does not succeed, she may try to randomly
use another IP, potentially not blacklisted. If knowledge about
the user’s ISP or country is available, the attacker may even try
to retrieve an IP from the same source (i.e., ISP or country).

Browser’s useragent. This feature can be also manipulated
by the attacker, by using different browsers to login. Thus, if
an attack is not successful, the attacker may attempt to login
from another browser. Clearly, if it is known that the targeted

user logs in usually using a specific browser, the same one can
be adopted by the attacker.

4) Attack Strategy: Under the aforementioned assumptions,
the attack strategy that achieves the attacker’s goal of imper-
sonating a targeted user (maximizing the probability of success
of each attack) amounts to mimicking the behavior of the
targeted user, under the constraints imposed by the attacker’s
knowledge and capability of manipulating the feature values.
For instance, if the attacker comes to know that the targeted
user logs in from a given country and using a given browser,
she will do her best to mimic this behavior, i.e., log in using
an IP from the same country and the same browser. In the
adversarial evaluation of Sect. V we will consider two specific
implementations of KCA and phishing attackers, each with a
different level of knowledge.

It is worth remarking that if an attacker can almost exactly
mimic the behavior of the targeted legitimate users in terms of
their features (in our experiments, by correctly adjusting the
IP address and useragent), then knowing how the classification
function works in more detail will not increase the probability
a successful attack. Exploiting knowledge of the classification
function becomes useful when the classification system relies
on a large number of features (with some potentially more
difficult to mimic than others), so the attacker can understand
which subset is worth attacking first to improve chances of
misleading detection (see, e.g., [4], [36], [16]). Since in our
evaluation we consider attackers that can successfully phish
both the IP address and the useragent (i.e., can potentially
mimic exactly the behavior of legitimate users), it is not
worth considering attackers that also exploit knowledge of the
classifier. We thus leave a more detailed investigation of such
attacks to future work.

IV. SYSTEM IMPLEMENTATION

We discuss here the prototype system implementation used
in our experiments. Fig. 2 depicts the architecture of the
proposed system in production. We maintain online a table of
all successful user authentication attempts along with prepro-
cessed feature attributes. The feature attributes store includes
the precomputed “risk score” and global probabilities for the
mentioned features. Both the user authentication history store
and the feature attributes store feed into the scoring model,
which computes gu(x) or ĝu(x). Depending on the provided
confidence score, the user is either granted or denied access.
Further information may be requested using a challenge-
response scheme if the scorer is not very confident. If the
login attempt is successful, the online user authentication store
is appropriately updated.

In terms of user experience, if the model score is in
the “gray area” where the user cannot be determined with
confidence to be either legitimate or malicious, we ask for
further information as a proof of the user being legitimate.
This could be a CAPTCHA challenge, a verification PIN
sent to the user’s registered phone via SMS, or a link sent
to the user’s email. Since the purpose of a CAPTCHA is
to distinguish bots from humans, this defense can only be
effective against a bot attack. For human-generated attacks the
phone or email verification serves the same purpose as two-
factor authentication: a legitimate user should easily be able
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Fig. 2: Architecture of the proposed system with learning-based reinforced authentication. If the user credentials are wrong, the
user is denied access. If the provided credentials are correct, additional information extracted from the login attempt is processed
by the reinforced authentication system. The system outputs a low confidence score gu(x) if the retrieved information matches
the normal behavior of the given user, as learned from the training data (e.g., logging in from a typical IP address and browser
for that user). If the confidence score is lower than a predefined user-specific threshold, i.e., gu(x) < θ, the user is correctly
authenticated. Otherwise, access is denied even if the provided credentials are correct.

to pass the challenge, while the attacker must obtain access
to the user’s phone or email account in order to complete the
login.

In our prototype implementation we choose to use the
two features of IP address and useragent. We chose these
features for several reasons: they are “sticky” for real users;
they admit natural hierarchies, so we can apply the techniques
of Sect. II-C to compute the desired probabilities in the
presence of sparse data; they have different levels of cost to
mimic (see Sect. VI); they are not strongly correlated with
bot traffic (our primary goal is to improve detection of non-
bot account compromise); and we could obtain them easily
from the LinkedIn data set. It is true that in practice IP and
useragent are correlated, and thus the independence assumption
that allows us to derive Eq. (7) from Eq. (6) does not hold in
practice; for example, mobile useragents are more likely to
show up on a phone carrier’s network. However, as we will
see in Sect. V, this correlation is not strong enough to prevent
the two features from providing complementary signals to the
model.

In production the model will be periodically trained to
incorporate changing trends in attack behavior. The training
phase in our case amounts to estimating the parameters of the
probability distributions involved in the computation of ĝu(x)
(Eq. 13) from the available data and computing the feature
weights via logistic regression. This last phase uses labeled
data from a team that manually investigates reports of account
takeover. The output of the training phase is a set of parameters
used to update the scoring model.

Our code for model evaluation and experiments was written
in R [47] and executed on a single 2.8 GHz MacBook Pro.
Once all the data was loaded into memory, the (amoritized)

cost for scoring was less than 10 milliseconds per user. In
practice the time taken to score will be dominated by the time
required to fetch user history and feature attributes from online
data stores.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

We built a prototype implementation of the model de-
scribed in Sect. II using one year of login data from LinkedIn,
the popular professional network. We acquired labeled data
in the form of three classes: legitimate logins, compromised
accounts, and login attempts from a single botnet attack. We
distinguish the two types of compromise events because they
have very different characteristics: compromised accounts by
definition got past LinkedIn’s existing login defenses, while
the vast majority of the botnet attempts were blocked by said
defenses.3 Our success criterion in measuring our new model is
to maintain a high level of protection against the botnet while
improving protection against the known instances of account
compromise.

For simplicity, our experiments focused on two features,
IP address and useragent; see Sect. IV for a discussion of
this choice. In practice LinkedIn’s present and future login
scoring models incorporate more than just these two features.
Our experiments were conducted offline and at no point were
live members scored by the particular models described below.

B. Dataset and Ground Truth

For our historical dataset we computed statistics on all suc-
cessful logins to LinkedIn for the six months July–December

3We unfortunately have no labeled data on attempts other than the botnet
attack that were blocked by the existing defenses.
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2014. For every login attempt made on the site, we maintain
data available in the HTTP headers like IP address and
useragent along with password validation, timestamp, etc. We
extracted global and per-member tables for IP address and
useragent. For each IP address x1 and member u, we use
the login frequencies from the table to compute p(x1) and
p(x1|u, L). Similarly, for each useragent x2 and member u,
we compute p(x2) and p(x2|u, L). We also used LinkedIn’s
internal reputation scoring system to compute “risk scores”
for IP addresses and useragents seen over the same six-month
period.

Our training and validation data came from logins in the
six months January–June 2015. There were two types of
positive cases: (1) a single botnet attack from January 2015
in which passwords were compromised but nearly all attempts
were blocked by LinkedIn’s existing defense, and (2) a set of
accounts positively identified by LinkedIn’s Security team as
being compromised during the time frame. For negative cases,
we sampled roughly 300,000 legitimate logins from this time
period. We constructed our sample so that all accounts had at
least one login during the six-month historical period, as our
model is not designed to protect accounts that have no login
history. (One could argue that all logins after a long dormant
period should be treated as suspicious.)

Since LinkedIn was running some form of login-scoring
system during the data collection period, our labeled data may
not be representative of the real-life distribution of account-
takeover attempts. In particular, beyond the single botnet
incident (which LinkedIn identified from signals in internal
data) we have no way of identifying with high confidence
account-takeover attempts that were already blocked by this
system. We could simply mark all blocked login attempts as
account-takeover attempts, but since we have reason to believe
that such attempts are a relatively small proportion of the total
blocked login traffic, marking all blocks as positive samples
would pollute our labeled dataset.

C. Baseline and Performance Metrics

Our baseline is one of the simplest rules used to protect
login: flag the login as suspicious if it comes from a country
not in the member’s prior login history. We evaluated our data
set against this criterion and found the following:

Class Country History Match
Legitimate 96.3%
Compromise 93.3%
Botnet 1.0%

The disparity in history match between the compromised
accounts and the botnet victims reflects the fact that country
history match is a component of LinkedIn’s existing login
defenses.

Since the simple country-mismatch rule is already strong
enough to stop 99% of (this particular) botnet attack, our goal
in developing and tuning our model will be to maintain a
high level of botnet protection while improving the coverage
of known compromises, without significantly increasing false
positives on legitimate accounts. To turn this goal into mea-
surable statistics, we will assess the performance of our model
against different types of attacks (either observed or simulated)

by computing the True Positive Rate (TPR, i.e., the fraction
of correctly classified account-takeover attempts) at 10% False
Positive Rate (FPR, i.e., the fraction of legitimate attempts
misclassified as attacks). Since false positives translate into
extra steps required for good users to log in (see Sect. IV), the
choice of an acceptable FPR is entirely a business decision to
be made on a per-implementation basis; we choose 10% here
as an arbitrary yet reasonable baseline.

To compare different choices of model (e.g., different
smoothing techniques) we plot the Receiver Operating Char-
acteristic (ROC) curve, which shows how the TPR varies
as a function of the FPR for different decision thresholds,
and compute the Area Under the ROC Curve (AUC). Notice
that using AUC as a performance metric allows us to avoid
choosing a specific decision threshold for classification. We
also remark that such metrics are insensitive to class imbalance
in the training data, which is necessary as we significantly
downsampled login data to create our training set.

D. System Performance and Model Variations

Using the LinkedIn data made available to us, we computed
confidence scores gu(x) using Eqs. (7) and (13). We tried
several different combinations of parameters and used area
under the ROC curve as our metric for comparison. The
dimensions along which we varied parameters were as follows:

Smoothing. We evaluated both backoff and linear interpolation
smoothing, as described in Sect. II-C. We also evaluated
two different choices for the parameter µhk

representing the
number of unseen IP addresses for each entity hk. Our first
choice was µhk

= 1 for all hk, as represented in Fig. 1.
However, we encountered two problems with this choice:

• First, µhk
= 1 does not properly penalize a country

mismatch. For example, in the scenario developed in
Fig. 1, a login from an IP in the most common ISP
in the most common country is assigned a probability
1/9, while a login from a completely new country is
assigned a probability 1/18. From our experience we feel
that the relative risk ratio of these two events should be
much greater than 2, so we want to assign a much lower
probability to the new country.

• Second, we found that Algorithm 1 did not converge when
run on our data set with smoothing µhk

= 1, while it did
converge when we set µhk

to be much larger.

We therefore recomputed the features with µhk
= |hk|, the

total number of IP addresses seen in entity hk, to obtain three
different choices for smoothing: backoff with µhk

= 1, backoff
with µhk

= |hk|, and interpolation with µhk
= |hk|.

We reserved 40% of our training set to train the inter-
polation coefficients, and evaluated all of our models on the
remaining 60% of the data.

Features and feature weights. For comparison purposes we
considered four different ways to combine features:

• IP address only, using Eq. (7),
• Useragent (UA) only, using Eq. (7),
• IP address and useragent, using Eq. (7),
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(a) Backoff smoothing, µhk = 1.
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(b) Backoff Smoothing, µhk = |hk|.

Fig. 3: ROC curves for the two backoff smoothing techniques with ` = 4. AUC values are reported in parentheses.
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(a) Interpolation smoothing.
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Fig. 4: ROC curves for interpolation smoothing with ` = 4 and evasion attacks. AUC values are reported in parentheses.

• IP and useragent features weighted by a logistic regres-
sion model, using Eq. (13) as described in Sect. II-D.

For the logistic regression model, we trained the classifier
on 60% of the data and evaluated it on the remaining 40%.4

Levels of granularity. Both IP addresses and useragents can
be aggregated into groupings of increasing size. We wanted
to determine the effect of changing the number of levels ` of
the hierarchy, so we considered two such hierarchies for each
feature:

4Since we already reserved 40% of the data to train interpolation coeffi-
cients, as a proportion of all entire dataset we trained on 36% and evaluated
on 24%.

• For IP addresses, we considered hierarchies of (IP ad-
dress, organization, autonomous system (AS), country,
world) (` = 4); and (IP, AS, world) (` = 2).

• For useragents, we considered nested hierarchies of (user-
agent, browser family, operating system, app, world)
(` = 4); and (useragent, OS, world) (` = 2). “App”
refers to the user experience: desktop, mobile web, native
mobile app, or unknown. By a “nested hierarchy” we
mean that the level above useragent is app + OS +
browser, then app + OS, etc.

Results. We computed 24 different sets of scores (3 smoothing
methods × 4 feature combinations × 2 sets of feature hier-
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Features Backoff, µhk = 1 Backoff, µhk = |hk| Interpolation, µhk = |hk|
` = 2 ` = 4 ` = 2 ` = 4 ` = 2 ` = 4

IP 0.56 0.624 0.82 0.868 0.82 0.872
UA 0.67 0.612 0.76 0.786 0.75 0.789
IP + UA 0.68 0.7 0.89 0.912 0.88 0.913
Weighted IP + UA 0.819 0.82 0.94 0.952 0.94 0.955

TABLE I: AUC values for various feature combinations, smoothing models, and number of levels ` in feature hierarchies.

Features Backoff, µhk = 1 Backoff, µhk = |hk| Interpolation, µhk = |hk|
` = 2 ` = 4 ` = 2 ` = 4 ` = 2 ` = 4

IP 0.19 0.19 0.28 0.39 0.28 0.44
UA 0.29 0.32 0.41 0.46 0.40 0.47
IP + UA 0.14 0.15 0.58 0.74 0.56 0.75
Weighted IP + UA 0.43 0.43 0.83 0.88 0.83 0.89

TABLE II: TPR at 10% FPR for various feature combinations, smoothing models, and number of levels ` in feature hierarchies.

archies) for each login in our test set. Table I gives AUC for
each combination. Table II shows the TPR at 10% FPR for
each set of scores. ROC curves with (` = 4) and 4 feature
combinations for the 3 smoothing techniques are plotted in
Fig. 3 and Fig. 4.

The data clearly show that IP address and useragent are not
very powerful on their own; they begin to detect a reasonable
number of account takeovers when combined, and when the
features are weighted via logistic regression they offer good
detection capability. The data also show that adding levels to
the hierarchy gives a small but noticeable performance boost.
As for the optimal smoothing method, it is clear that setting
µhk

= 1 is the poorest choice. However, when µhk
= |hk| the

backoff and interpolation methods are essentially equivalent,
with interpolation showing a very small edge.

Given these results, we choose as our best model a logistic
regression model over IP and useragent features using the ` =
4 hierarchy, smoothed via interpolation with µhk

= |hk|. Using
this model we evaluated performance on the botnet attack and
the compromised accounts separately. We found that at 10%
FPR we could detect 95% of the botnet attack and 77% of
the compromised accounts. Thus by relaxing our allowed FPR
to 10% we can improve the detection rate of compromised
accounts by a factor of 12, while only letting an additional
4% of botnet accounts through.

E. Experiments: Evasion Attacks

To test our model against attackers with various levels of
sophistication, we simulated attack datasets for four types of
attacks. We assume that at a minimum all of the victims’
passwords are known to the attacker; in some cases the attacker
has more information. In each case we simulated the attack by
randomly sampling members from the historical period and
assigning each attacked member an IP address and useragent
as discussed in the following.

1) Password-only attacker: This is a known-credentials
attack in which the attacker does not possess any information
beyond the target members’ credentials. The attacker writes a
simple script using an off-the-shelf package and uses a hosting
provider to launch the attack. To simulate this attack, we

sampled IP addresses from a known hosting provider weighted
by their “risk score” as calculated by LinkedIn, and we give
all attempts the useragent “Python-httplib2/0.7.2 (gzip)”. Our
best model easily identified this attack, with AUC 0.999 and
99% TPR at just a 1% FPR.

2) Botnet attacker: This is also a known-credentials attack
similar to the previous scenario except that the attacker here
has more resources at his disposal. The attacker in this case
knows that he should vary IP addresses and useragents to
get around simple rate-limiting and bot detection. He thus
employs a botnet to launch the attack and randomizes his
useragent string. This would imply that both IPs and useragent
of login attempts would appear to be distributed. To simulate
this attack, we sampled IPs weighted by their risk score and
sampled useragents uniformly at random from the historical
data set. Our best model did well at detecting this attack, with
AUC 0.992 and 99% TPR at 10% FPR. As expected, using
useragent features only was useless in detecting this attack:
using useragent features alone we could only detect less than
0.2% of true positives at 10% FPR.

3) Researching attacker: Moving on to a more sophisti-
cated attack, we assume that the attacker in this case scrapes
information about the target’s country. The attacker then uses
proxies only from the target’s country to make the logins look
less suspicious. To simulate this attack, we sample members
with at least one successful login from a target country (United
States in our experiments). We then sample IPs from this
country weighted by their risk score and use one common
useragent across all simulated login attempts. Our best model
did well at detecting this attack, with AUC 0.985 and 99%
TPR at 10% FPR.

4) Phishing attacker: Most motivated of all attacker types,
we assume that this category of attacker has been successfully
able to phish its targets thereby obtaining useragent of their
browser and IP address. With this information, the attacker
uses the exact same useragent and an IP from the same country
as the victim to launch the attack. To simulate this attack
type, we sample member sessions from training set. For these
members we use the same useragent and sample an IP from
the same country, again weighted by the IP risk score. As
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Attacker AUC TPR at 10% FPR
Password-only 0.999 1.00
Botnet (simulated) 0.992 0.99
Researching 0.985 0.99
Phishing 0.924 0.74
Botnet (real) 0.969 0.95
Compromised accounts 0.934 0.77

TABLE III: Performance of our best model under attack.

expected, this was the hardest attack to detect. Our best model
gave AUC 0.924 and 74% TPR at 10% FPR.

A summary of our experiment results is given in Table III,
while the corresponding ROC curves are shown in Fig 4.
We also include results on the two labeled sets of account
takeovers from the LinkedIn data, i.e., the (real) botnet attack
and the compromised accounts. Notably, the performance of
our system improves against the less knowledgeable attackers
simulated in this experiment, since the real attacks present in
the LinkedIn data are actually more sophisticated.

F. Experiment: Feature Effects

Reputation systems. To test the effect of the reputation
systems on our model, we evaluated our best model on the
same training and validation set as above, but set the reputation
scores p(A|x) to be identical for all feature values x. We found
that our ability to detect the botnet attack actually improved,
from 95% at 10% FPR to 99%. On the other hand, our ability
to detect compromised accounts degraded, going from 77% to
60% at 10% FPR. These results demonstrate that LinkedIn’s
reputation systems do reflect the probability of attack to some
extent; they also show that the particular botnet incident in
question came from IP addresses and/or useragents that were
not scored as particularly abusive by LinkedIn.

As for the attack data, performance on Attacks 1 and 2
remained strong 99% and 97% TP at 10% FPR, respectively,
while performance on Attack 3 decreased to 80% and detection
of Attack 4 dropped dramatically, to 19%. These results show
that for a motivated attacker having a robust and accurate set
of reputation scores is essential to repel the attack.

Member history data. We wanted to test the hypothesis that
members with more logins in their history are better protected
by our model. To do this we split the member set into two
parts: those with 8 or more logins in their history (27% of
our data set) and those with fewer than 8 logins (73% of our
data set) and evaluated our best model on each. We found that
for members with less history, compromised accounts were
slightly less likely to be detected (75% vs. 77% at 10% FPR)
and botnet victims were slightly more likely to be detected
(97% vs. 94%). We believe that this difference is mostly due to
the fact that botnet victims were proportionally overrepresented
amongst the group with few logins.

For Attacks 1–3 the model performance was essentially the
same on both segments. For Attack 4 we found that members
with more history were better protected; this is due to the fact
that the attacker picked a session randomly from the member’s
history to emulate, so if the member has little history then the

estimates for p(x|u, L) will be higher for the emulated session
than if the member has many events in her history.

VI. CLASSIFYING FEATURES

Individual features chosen for our model have various
properties that are relevant for reinforced authentication. We
now propose a classification along three axes that allows us to
study and compare their properties and their usefulness.

Phishability. This characteristic concerns the resistance of a
feature to phishing attacks. In a traditional phishing attack,
the attacker records the username/password pair, which allows
him access to the service A. If the service A uses a scheme
such as the one studied in this work, simply recording the
username and password will not give the attacker access to A.
However, an attacker can adapt to the new situation and, in
addition to username and password, can record all the features
that normally would be recorded by the service A, and can
utilize the gained information when accessing A.

We say a feature is phishable if observing a single instance
of an accepted login allows an attacker to fake that specific
feature with high probability. We say a feature is non-phishable
if observing a single login allows the attacker to fake that
feature with negligible probability only. Some features may
be learnable not from a single observed login but from a
few. Luring the same user to a phishing site more than once
is substantially more complicated, in particular if there are
constraints such as that the logins must be consecutive. Such
features pose much less of a problem, but may need to be
considered in some circumstances.

Cost to mimic. Even phishable features can be useful in
identifying a phishing attack, as an attacker needs to mimic
the feature when logging in, which comes at a cost.

We say a feature is cheap to mimic (resp., expensive
to mimic) if mimicking the feature incurs minimal (resp.,
high) cost to the attacker. Here “cost” can refer to different
quantities: money, time required for coding, time required for
execution, and others. Also, whether a cost is deemed “high”
or “low” is most likely application-specific and outside the
scope of this discussion.

Accuracy. Discriminating properties of the different features
used in the model vary. Features with high accuracy (resp., low
accuracy) are, if matching, a strong (resp., weak) indication
that the login attempt is legitimate. The relative accuracy of
different features can be assessed by evaluating the perfor-
mance of a number of one-feature classifiers in a given model
framework.

A. Reinforced Authentication Features

We now apply this classification to some features that are
used for reinforced authentication and discuss their properties.

The source IP, as well as the directly related source ASN
and source country, are phishable features; i.e., a phishing
attack immediately gives away a valid source IP. However, they
still constitute reasonable features since they are moderately
expensive to mimic. Mimicking the exact source IP is usually
quite hard; however, having a source IP from the same ASN
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will usually be sufficient. Mimicking still requires effort, e.g.,
by having access to a botnet that performs the login attempts
from a bot in the required ASN or country. Another quality is
the high accuracy of the source IP, as established in Sect. V.

We discuss here two different variants of the useragent
feature. The useragent string, i.e., the identifier transmitted
as part of the HTTP header, is easily phishable. Unlike the IP
address, the useragent string is very cheap to mimic by simply
adapting the HTTP header field. This feature is less accurate
than IP address, as demonstrated in Sect. V. However, one
does not need to rely on the useragent string to determine the
software running on the user’s machine. Browser fingerprinting
techniques can be used to gather precise information on the
software running, including the browser, browser extensions,
the OS, and if it is running inside a virtual machine. While
the resulting feature is still phishable, precisely simulating
all the gathered information can become costly, which makes
the feature moderately expensive to mimic, in particular when
targeting more than a very limited number of accounts.

Time between login events is an example of a feature that is
non-phishable, and thus provides a different quality of security.
Cost to mimic can be substantial, as the attacker has to learn
from multiple (consecutive) successful login attempts by the
victim and wait a specific time between login attempts. While
we did not incorporate this feature into our models, a rough
analysis of the LinkedIn data suggests that the feature is of low
accuracy since the distributions of the feature for legitimate
and attack events are very similar.

VII. RELATED WORK

The weakness of passwords has been understood for a
long time. Password re-use is problematic as leakage from a
single password puts multiple accounts of a single user at risk.
Studies have consistently shown that users re-use passwords,
and even re-use passwords from high-value accounts on low-
value accounts [25], [1], [17]. Weak passwords is also a widely
known problem. The strength of user-chosen passwords against
password guessing attacks has been studied since the early
times of password-based authentication [8], [56], [40] Current
techniques for password guessing are Markov models [44],
[21], [37] and probabilistic context-free grammars [55]; state-
of-the-art tools include John the Ripper [51] and HashCat [52].
Historically, the strength of passwords against guessing attacks
has been assessed by using password crackers to find weak
passwords [42]. Recently much more precise techniques have
been developed [8], [50], [13], [18], [22].

One common alternative to password-based authentication
is using authentication tokens, usually in two-factor authen-
tication. The authentication token can either be a hardware
token, an app running on a smart-phone, or a second com-
munication channel such as a mobile phone number. Security
tokens offer a high security level, if implemented and used
correctly, and are implemented at most major websites as an
optional feature. However, adoption rates are low, as users are
often unwilling to carry around the security token, which can
be lost and stolen, and needs to be connected to the device for
each authentication request. Furthermore, managing tokens for
Internet-wide service with a diverse user-base is a challenge.
Another common alternative is biometric authentication, based

on fingerprints [39], face recognition [34], typing dynam-
ics [28], [41], [32], [19], or many other factors. Biometric
schemes are rarely implemented for large online services, as
they often require special hardware on the client side, are
difficult to implement securely for remote logins, and raise
privacy concerns.

There is very little work available that considers classifying
suspicious behavior at login time. While it is obvious from
personal experience that a number of websites use some
form of reinforced authentication, very few details about their
systems are known and the effectiveness has never been
publicly discussed. In a presentation [46], a Facebook engineer
gives some idea about their system at the time, which uses a
whitelist based on browser cookies, IP ranges, and geolocation,
a blacklist based on several known attack patterns (such as
many failed login attempts from an IP), and some undisclosed
additional mechanisms. A high-level comparison of commer-
cially available tools for protecting online accounts (named
risk-based authentication) is available from Forrester [38],
but no technical details are provided. RSA provides some
information about it’s risk-based authentication solution [24],
but again the disclosed information is minimal. The lack of
public evaluation is against the standards typically applied to
cryptography and security, thus risking that weaknesses found
by adversaries may get unnoticed.

Related systems are in place monitoring transactions in
financial networks. For credit card transactions in particular,
automatic classifiers are used to select possibly fraudulent
transactions for manual review. An RSA white paper gives
some insight into RSA’s solution for credit card protec-
tion [23]. Florencio et al. [26] mention that, for financial online
accounts, the security is indirectly given by the fraud-detection
back-end, which uses machine learning as well.

In a recent survey paper, Bonneau et al. [10] give an
overview over current challenges for password-based authenti-
cation, and mention a machine-learning approach as the most
likely solution to the problems that user authentication faces to-
day. Potential privacy implications of reinforced authentication
have been also recently discussed in a position statement [9].

It is worth mentioning that, as advocated by the adversarial
machine learning field, protection systems based on statistical
knowledge extracted from data are prone to be attacked by
skilled adversaries who can purposely modify data to mislead
the outcome of the automatic analysis [6], [4], [31], [3],
[12]. We have performed a preliminary investigation of the
vulnerabilities of our system against evasion attacks, in which
attackers aim to impersonate legitimate users during opera-
tion. Another interesting scenario may be that of poisoning
attacks [3], [48], [31], [7], [57], in which the attacker may
tamper with the training data to mislead learning; e.g., she may
try to increase the reputation of IPs from which she is going to
launch a future attack, by legitimately logging in several times
from them, to accounts that are not necessarily associated to
real users, but created on purpose. A crowdturfing campaign
may be also staged to this end [53].

Besides considering more challenging attack settings, we
may exploit some countermeasures proposed in the area of
adversarial machine learning to improve system security in
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more practical cases. Most of the work in that area has
been devoted to countering attacks in a proactive manner,
by explicitly modeling the interactions between classification
algorithms and attackers, or considering attacks as outlying
samples with respect to the expected, normal behavior [16],
[12], [29], [45], [48], [15], [31], [3]. While investigating these
countermeasures may be of interest for future work, it is well
known that, in practice, system security can also be signif-
icantly improved in a reactive manner, by timely detecting
novel attacks and retraining the system, and verifying the
consistency of classifier decisions with the (labeled) training
data [5], [31].

VIII. CONCLUSIONS AND FUTURE WORK

In this work we have evaluated an approach to strength-
ening password-based authentication by classifying login at-
tempts into normal and suspicious activity based on parameters
available during login. This approach is particularly useful for
Internet-wide services with a large and diverse user base, as it
can be deployed without changing the user experience. Similar
schemes are in use by large websites, and our work is the
first public analysis and benchmark of such approaches. We
make no claim that our system is more sophisticated or more
accurate than any given non-public scheme, and we welcome
contributions to the literature that offer contrasting approaches.

In Sects. II–VI we have described a statistical framework,
provided a systematic study of possible attackers, developed a
fully functional prototype implementation, and validated the
system on a sample of real-life login data from LinkedIn,
showing a recall of up to 89% for a false-positive rate of
10%, using the user’s IP history as well as the useragent-string
history.

Several directions seem promising for future work. The
classifiers we considere do not take into account temporal
correlation among login attempts. This may carry useful
information, as attacks are often launched in campaigns and
in a short time span. Hence, if a login attempt is marked as an
attack, then other login attempts that are close in time to this
particular one and have a substantial overlap of feature values
are likely to be account-takeover attempts as well.

Manually labeling account-takeover events is a time-
consuming task. Techniques like active learning can be used
to reduce this effort, by smartly choosing login events that
require manual labeling to maximally improve the classifier.

For our prototype evaluation of the model, the feature
set computation is performed on historical data instead of in
real-time. By updating frequency features in real time, we
can potentially avoid cases which were wrongly marked as
account-takeover attempts due to lack of updated user login
history in our dataset.

ACKNOWLEDGMENTS

This work has been partly supported by the project “Ad-
vanced and secure sharing of multimedia data over social
networks in the future Internet” funded by the Regional
Administration of Sardinia, Italy (CUP F71J11000690002).

REFERENCES
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