Abstract
The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Anderson, K., J.L. Dungan, and A. MacArthur (2011), On the reproducibility of field-measured reflectance factors in the context of vegetation studies, Remote Sens. Environ. 115, 8, 1893–1905, DOI: 10.1016/j.rse.2011.03.012.
Beisl, U., G. Strub, and C. Dickerhof (2000), Validation of hyperspectral imaging data from the Barrax test site with BRDF ground measurements in the reflective wavelength range. In: 2nd EARSeL Workshop on Imaging Spectroscopy, 11–13 July 2000, Enschede, The Netherlands.
Blackburn, G.A. (2007), Hyperspectral remote sensing of plant pigments, J. Exp. Bot. 58, 4, 855–867, DOI: 10.1093/jxb/erl123.
Cho, M.A., I. Sobhan, A.K. Skidmore, and J. de Leeuw (2008), Discriminating species using hyperspectral indices at leaf and canopy scales, Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 37, B7, 369–376.
Darvishzadeh, R., C. Atzberger, A. Skidmore, and M. Schlerf (2010), Retrieval of vegetation biochemicals using a radiative transfer model and hyperspectral data. In: W. Wagner, and B. Székely (eds.), TC VII Symposium–100 Years ISPRS–Advancing Remote Sensing Science, 5–7 July 2010, Vienna, Austria, 171–175.
de Miguel, E., M. Jiménez, I. Pérez, O.G. de la Camara, F. Muñoz, and J.A. Gómez-Sânchez (2015), AHS and CASI processing for the REFLEX remote sensing campaign: methods and results, Acta Geophys. 63, 6, 1485–1498, DOI: 10.1515/acgeo-2015-0031 (this issue).
Delalieux, S., B. Somers, W.W. Verstraeten, J.A.N. van Aardt, W. Keulemans, and P. Coppin (2009), Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology, Int. J. Remote Sens. 30, 8, 1887–1912, DOI: 10.1080/01431160802541556.
Dobrowski, S.Z., J.C. Pushnik, P.J. Zarco-Tejada, and S.L. Ustin (2005), Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale, Remote Sens. Environ. 97, 3, 403–414, DOI: 10.1016/j.rse.2005.05.006.
Govender, M., P.J. Dye, I.M. Weiersbye, E.T.F. Witkowski, and F. Ahmed (2009), Review of commonly used remote sensing and ground-based technologies to measure plant water stress, Water SA 35, 5, 741–752, DOI: 10.4314/wsa. v35i5.49201.
Guanter, L., V. Estellés, and J. Moreno (2007), Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data, Remote Sens. Environ. 109, 1, 54–65, DOI: 10.1016/j.rse.2006.12.005.
Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada, and I.B. Strachan (2004), Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sens. Environ. 90, 3, 337–352, DOI: 10.1016/j.rse. 2003.12.013.
Johnson, L.F. (2003), Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard, Aust. J. Grape Wine Res. 9, 2, 96–101, DOI: 10.1111/j. 1755-0238.2003.tb00258.x.
Martinez, B., F.J. Garcia-Haro, and F. Camacho-de Coca (2009), Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland Barrax site, Agr. Forest Meteorol. 149, 1, 130–145, DOI: 10.1016/j.agrformet.2008.07.014.
Osório, J., M.L. Osório, and A. Romano (2012), Reflectance indices as nondestructive indicators of the physiological status of Ceratonia siliqua seedlings under varying moisture and temperature regimes, Funct. Plant Biol. 39, 7, 588–597, DOI: 10.1071/FP11284.
Quintano, C., A. Fernândez-Manso, Y.E. Shimabukuro, and G. Pereira (2012), Spectral unmixing, Int. J. Remote Sens. 33, 17, 5307–5340, DOI: 10.1080/01431161.2012.661095.
Richter, R., and D. Schläpfer (2011). Atmospheric/topographic correction for airborne imagery. DLR Report, DLR-IB 565-02/11, Wessling, Germany.
Schaepman-Strub, G., M.E. Schaepman, T.H. Painter, S. Dangel, and J.V. Martonchik (2006), Reflectance quantities in optical remote sensing—definitions and case studies, Remote Sens. Environ. 103, 1, 27–42, DOI: 10.1016/j.rse.2006.03.002.
Schmid, T., M. Koch, J. Gumuzzio, and P.M. Mather (2004), A spectral library for a semi-arid wetland and its application to studies of wetland degradation using hyperspectral and multispectral data, Int. J. Remote Sens. 25, 13, 2485–2496, DOI: 10.1080/0143116031000117001.
Sobrino, J.A., J.C. Jiménez-Muñoz, Zarco-Tejada, G. Sepulcre-Cantó, and E. de Miguel (2006), Land surface temperature derived from airborne hyperspectral scanner thermal infrared data, Remote Sens. Environ. 102, 1–2, 99–115, DOI: 10.1016/j.rse.2006.02.001.
Timmermans, W., C. van der Tol, J. Timmermans, M. Ucer, X. Chen, L. Alonso, J. Moreno, A. Carrara, R. Lopez, F. de la Cruz Tercero, H.L. Corcoles, E. de Miguel, J.A.G. Sanchez, I. Pérez, B. Franch, J.-C.J. Muñoz, D. Skokovic, J. Sobrino, G. Soria, A. MacArthur, L. Vescovo, I. Reusen, A. Andreu, A. Burkart, C. Cilia, S. Contreras, C. Corbari, J.F. Calleja, R. Guzinski, C. Hellmann, I. Herrmann, G. Kerr, A.-L. Lazar, B. Leutner, G. Mendiguren, S. Nasilowska, H. Nieto, J. Pachego-Labrador, S. Pulanekar, R. Raj, A. Schikling, B. Siegmann, S. von Bueren, and Z. Su (2015), An overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign, Acta Geophys. 63, 6, 1465–1484, DOI: 10.2478/s11600-014-0254-1 (this issue).
Yao, Y., N. Wei, Y. Chen, Y. He, and P. Tang (2010), Soil moisture monitoring using hyper-spectral remote sensing technology. In: Q. Luo (ed.), 2010 2nd IITA Int. Conf. on Geoscience and Remote Sensing (IITA-GRS), 28–31 August 2010, Qingdao, China, IEEE, 373–376, DOI: 10.1109/IITA-GRS.2010.5604219.
Zarco-Tejada, P.J., J.R. Miller, J. Harron, B. Hu, T.L. Noland, N. Goel, G.H. Mohammed, and P. Sampson (2004), Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies, Remote Sens. Environ. 89, 2, 189–199, DOI: 10.1016/j.rse.2002.06.002.
Zarco-Tejada, P.J., A. Berjón, R. López-Lozano, J.R. Miller, P. Martin, V. Cachorro, M.R. Gonzalez, and A. de Frutos (2005), Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy, Remote Sens. Environ. 99, 3, 271–287, DOI: 10.1016/j.rse.2005.09.002.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Calleja, J.F., Hellmann, C., Mendiguren, G. et al. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy. Acta Geophys. 63, 1499–1515 (2015). https://doi.org/10.1515/acgeo-2015-0036
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1515/acgeo-2015-0036