Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dielectric Measurements On Printed-Wiring And Circuit Boards, Thin Films, And Substrates: An Overview

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A review of the most common methods of permittivity measurements on thin films, printed-wiring and circuit boards, and substrates is presented. Transmission-line techniques, coaxial apertures, open resonators, surface-wave modes, and dielectric resonators methods are examined. The frequency range of applicability and typical uncertainties associated with the methods are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Takahashi, A. Nagai, A. Mukoh, M. Wajima, and K. Tsukanishi, “Low dielectric material for multilayer printed wiring boards,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. 13, pp. 1115– 1120, December 1990.

    Article  CAS  Google Scholar 

  2. J. Jean and T. K. Gupta, “Design of low dielectric glass+ceramics for multilayer ceramic substrate,” IEEE Trans. Components, Packaging, and Manufacturing Technology-Part B, vol. 17, pp. 228–233, May 1994.

    Article  CAS  Google Scholar 

  3. A. Sasaki and Y. Shimada, “Electrical design technology for low dielectric constant multilayer ceramic substrate,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. 15, pp. 56–62, February 1992.

    Article  Google Scholar 

  4. I. Bahl and K. Ely, “Modern microwave substrate materials,” Microwave J., vol. 33, pp. 131–146, 1990.

    Google Scholar 

  5. W. P. Westphal, “Techniques of measuring the permittivity and permeability of liquids and solids in the frequency range 3 c/s to 50 kMc/s,” Laboratory for Insulation Research Technical Report XXXVI, MIT, 1950.

  6. J. Baker-Jarvis, M. D. Janezic, J. John H. Grosvenor, and R. G. Geyer, “Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,” Natl. Inst. Stands. Tech. Technical Note 1355, National Institute of Standards and Technology, 1992.

  7. J. Baker-Jarvis, “Transmission/reflection and short-circuit line permittivity measurements,” Tech. Rep. TN 1341, Natl. Inst. Stands. Tech., July 1990.

  8. K. E. Mattar, D. G. Watters, and M. E. Brodwin, “Influence of wall contacts on measured complex permittivity spectra at coaxial line frequencies,” IEEE Trans. on Microwave Theory and Tech., vol. 39, no. 3, p. 532, 1991.

    Article  Google Scholar 

  9. R. A. York and R. C. Compton, “An automated method for dielectric constant measurements of microwave substrates,” Microwave J., vol. 33, pp. 115–121, March 1990.

    Google Scholar 

  10. G. R. Traut, “Electrical test methods for microwave pcb’s,” Microwave J., vol. 24, pp. 73–79, August 1981.

    Google Scholar 

  11. J. Q. Howell, “A quick, accurate method to measure the dielectric constant of microwave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 142–143, March 1973.

    Article  Google Scholar 

  12. L. S. Napoli, “A simple technique for the accurate determination of microwave dielectric constant for microwave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 664–667, July 1971.

    Article  Google Scholar 

  13. K. C. Gupta, R. Garg, and I. J. Bahl, Microwave Lines and Slotlines. Norwood, MA: Artech House, 1979.

  14. M. V. Schneider, “Microstrip lines for microwave integrated circuits,” Bell Sys. Techn. J., vol., pp. 1421–1444, May–June 1968.

  15. K. M. Fidanboylu, S. M. Riad, and A. Elshabini-Riad, “A new time-domain approach for determining the complex permittivity using stripline geometry,” IEEE Trans. Instrum. Meas., vol. IM-39, pp. 940–944, December 1990.

    Article  Google Scholar 

  16. R. A. Waldron, “Theory of a strip-line cavity for measurement of dielectric constants and gyromagnetic resonance line-widths,” IEEE Trans. Microwave Theory Tech., vol. IM-, pp. 123–131, January 1964.

    Article  Google Scholar 

  17. H. A. Wheeler, “Transmission-line properties of parallel-wide strips separated by a dielectric sheet,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 172–185, March 1965.

    Article  Google Scholar 

  18. W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave Theory Tech., vol. IM-, pp. 34–, January 1973.

    Article  Google Scholar 

  19. I. J. Bahl and S. S. Stuchly, “Analysis of a microstrip covered with a lossy dielectric,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 104–109, February 1980.

    Article  Google Scholar 

  20. H. Tanaka and F. Okada, “Precise measurements of dissipation factor in microwave printed circuit boards,” IEEE Trans. lustrum. Meas., vol. IM-38, pp. 509–514, April 1989.

    Article  Google Scholar 

  21. J. Murray Olyphant and J. H. Ball, “Stripline methods for dielectric measurements at microwave frequencies,” IEEE Trans. Elec. Instil., vol. EI-5, pp. 26–32, March 1970.

    Article  Google Scholar 

  22. C. S. Chang and A. P. Agrawal, “Fine line thin dielectric circuit board characterization,” in 44th Electronic Components and Technology Conference, pp. 564–569, Components, Hybrids and Manufacturing Technology Society, 1994.

  23. “Thin material measurement,” Tech. Rep. Military Specification MIL-P-13949G, 1983.

  24. N. K. Das, S. M. Voda, and D. M. Pozar, “Two methods for the measurement of substrate dielectric constant,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 636–641, July 1987.

    Article  Google Scholar 

  25. G. R. Traut, “Electrical performance of microwave boards,” IEEE Trans. Components, Packaging, and Manufacturing Technology-Part B, vol. 18, pp. 106–111, February 1995.

    Article  Google Scholar 

  26. S. Bringhurst and M. F. Iskander, “New metallized ceramic coaxial probe for high-temperature broadband dielectric properties of low permittivity materials,” in Microwaves: Theory and Application in Materials Processing II, pp. 503–510, Amer. Ceram. Soc: Ceramics Trans., 1993.

  27. S. Jenkins, T. E. Hodgetts, G. T. Symm, A. G. P. Warhamm, and R. N. Clarke, “Comparison of three numerical treatments for the open-ended coaxial line sensor,” Elect. Lett., vol. 24, pp. 234–235, 1992.

    Google Scholar 

  28. J. Baker-Jarvis and R. G. Geyer, “Nondestructive testing with a coaxial probe,” in URSI Digest, URSI, January 1992. Presented at URSI, Boulder, CO.

  29. R. Zoughi and M. Lujan, “Nondestructive microwave thickness measurements of dielectric slabs,” Materials Evaluation, vol. 48, pp. 1100–1105, 1989.

    Google Scholar 

  30. J. Baker-Jarvis, M. D. Janezic, P. D. Domich, and R. G. Geyer, “Analysis of an open-ended coaxial probe with lift-off for nondestructive testing,” IEEE Trans. Instrum. Meas., pp. 711–718, October 1994.

  31. J. Baker-Jarvis and M. D. Janezic, “The two-port coaxial probe for thin materials (in review),” IEEE Trans, vol. , p. , .

  32. D. K. Ghodgaonkar, V. V. Varidan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas., vol. 37, pp. 789–793, 1989.

    Article  Google Scholar 

  33. J. Muscil and F. Zacek, Microwave Measurements of Complex Permittivity by Free-Space Methods and Their Applications. New York: Elsevier, 1986.

  34. D. K. Ghodgaonkar, O. P. Gandhi, and M. J. Hagmann, “Estimation of complex permittivities of three-dimensional inhomogeneous bodies,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, no. 6, pp. 442–446, 1983.

    Article  Google Scholar 

  35. J. C. Bolomey and C. Pichot, “Microwave tomography: from theory to practical imaging systems,” Int. J. Imag. Syst. Tech., vol. 1, pp. 119–131, 1990.

    Google Scholar 

  36. G. Arjavalingam, Y. Pastol, J. Halbout, and G. V. Kopcsay, “Broad-band microwave measurements with transient radiation from optoelectronically pulsed antennas,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 615– 621, May 1990.

    Article  Google Scholar 

  37. A. Deutsch, “Measurement of dielectric anisotropy od bpda-pda polyimide in multilayer thin-film packages,” IEEE Trans. Components, Packaging, and Manufacturing Technology-Part B, vol. 17, pp. 486–492, November 1994.

    Article  CAS  Google Scholar 

  38. R. B. Goldfarb and H. E. Bussey, “Method for measuring complex permeability at radio frequencies,” Rev. Sci. Instrum., vol. 58, no. 4, pp. 624–627, 1987.

    Article  CAS  Google Scholar 

  39. H. E. Bussey, “Measurement of rf properties of materials- a survey,” Proc. IEEE, vol. 55, pp. 1046–1053, June 1967.

    Article  Google Scholar 

  40. S. Jenkins, T. E. Hodgetts, R. N. Clarke, and A. W. Preece, “Dielectric measurements on reference liquids using automatic network analyzers and calculable geometries,” Meas. Sci. Technol., vol. 1, pp. 691–702, 1990.

    Article  CAS  Google Scholar 

  41. W. P. Harris and A. H. Scott, “Precise measurement of dielectric constant by the two-fluid technique,” Conference on Electrical Insulation, 1962.

  42. F. I. Mopsik, “Two-fluid measurements on thin films,” Tech. Rep. TN 1294, Natl. Inst. Stands. Tech., May 1992.

  43. “New technologies for wide impedance range measurements to 1.8 GHz,” Product note no. 4291-1, Hewlett Packard, 1994.

  44. J. Krupka, R. G. Geyer, M. Kuhn, and J. H. Hinken, “Dielectric properties of single crystals of Al2o3, LaAlO, NdGaO3, SrTiO3, and MgO at cryogenic temperatures,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 10, pp. 1886–1890, 1994.

  45. R. D. Harrington, R. C. Powell, and P. H. Haas, “A re-entrant cavity for measurement of complex permeability in the very-high frequency region,” J. Res. Nat. Bur. Stds., vol. 56, no. 3, pp. 129–133, 1956.

  46. C. N. Works, T. W. Dakin, and F. W. Boggs, “A resonant cavity method for measuring dielectric properties at ultra-high frequencies,” AIEE Trans., vol. 63, pp. 1092–1098, 1944.

  47. A. Kaczkowski and A. Milewski, “High-accuracy wide-range measurement method for determination of complex permittivity in re-entrant cavity: Part A- theoretical analysis of the method,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, no. 3, pp. 225–228, 1980.

  48. J. Baker-Jarvis and B. Riddle, “Theoretical and experimental analysis of the reentrant cavity (in prep.),” IEEE Transactions on Microwave Theory and Tech., vol. , p. , .

  49. G. Kent, “Nondestructive measurements of substrate permittivity,” in Proceedings of the 3rd International Symposium on Recent Advances in Microwave Technology, pp. 1–4, ISRAMT’91, 1991.

  50. M. McPhun and K. Mehmet, Thin film dielectric measurements, pp. 60–71. Guilford, U.K.: Science and Technology, 1973.

  51. T. Nishikawa, H. Tanaka, and Y. Ishikawa, “Noncontact relative measurement method for complex permittivity of ceramic substrate,” IECE of Japan Symposium Digest, pp. 154–155, 1986.

  52. R. N. Clarke and C. B. Rosenberg, “Fabry-Perot and open resonators at microwave and millimeter wave frequencies, 2–300 GHz,” J. Phys. E.: Sci. Instrum., vol. 15, no. 9, pp. 9–24, 1982.

  53. P. J. Hood and J. F. DeNatale, “Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films,” J. Appl. Phys., vol. 79, pp. 376–381, July 1991.

  54. J. Zhao, K. D. Stephan, S. Wong, and R. S. Porter, “Tensor permittivity measurements of thin films at millimeter wavelengths,” Journal of Infrared and Millimeter Waves, vol. 9, no. 12, pp. 1093–1105, 1988.

  55. G. I. Woolaver, “Accurately measure dielectric constant of soft substrates,” Microwave & RF, vol. 24, pp. 153– 158, August 1990.

  56. C. D. Gupta, “A new microwave method of measuring complex dielectric constant of high-permittivity thin films,” IEEE Trans. Instrum. Meas., vol. IM-24, pp. 61–65, March 1975.

  57. K. Laursen, D. Hertling, N. Berry, S. A. Bidstrup, P. Kohl, and G. Arroz, “Measurement of the electrical properties of high performance dielectric materials for multichip modules,” in IEPS Proceedings, pp. 11–13, 1993. San Diego, CA.

  58. C. S. Chang, “Resistive signal line wiring net designs in multichip modules,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. 16, pp. 909–918, December 1993.

  59. O. Weiming, C. G. Gardner, and S. A. Long, “Nondestructive measurement of a dielectric layer using surface electromagnetic waves,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 255–260, March 1983.

  60. J. R. W. Alexander and R. J. Bell, “The use of surface electromagnetic waves to measure material properties,” J. Noncryst. Solids, vol. 19, pp. 93–103, 1975.

  61. J. Krupka, D. Cros, M. Aubourg, and P. Guillon, “Study of whispering gallery modes in anisotropic single-crystal dielectric resonators,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 1, pp. 56–61, 1994.

Download references

Author information

Authors and Affiliations

Authors

Additional information

U.S. Government work not protected by U.S. copyright

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker-Jarvis, J., Jones, C.A. Dielectric Measurements On Printed-Wiring And Circuit Boards, Thin Films, And Substrates: An Overview. MRS Online Proceedings Library 381, 153–164 (1995). https://doi.org/10.1557/PROC-381-153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-381-153