Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lattice distortions in high-entropy alloys

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

One of the founding concepts of the high-entropy alloy (HEA) field was that the lattice structures of multicomponent solid solution phases are highly distorted. The displacement of the constituent atoms, away from their ideal locations (local lattice strain), has been widely cited as the reason for a number of the observed physical and mechanical properties. However, very little data directly characterizing these lattice distortions exist and, thus, the validity of this hypothesis remains an open question. Here, the concept is reviewed by considering the underlying principles of the lattice distortions, the suitability of different assessment methods, and the direct experimental data currently available. It is found that, at present, there is no clear evidence that the lattice distortions in HEAs are significantly greater than those of conventional alloys. However, so few alloys have been appropriately characterized that this conclusion cannot be considered overarching and further research is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

Notes

  1. In the HEA literature, the term lattice is used as a synonym for structure. Crystallographically, a lattice is an array of points that defines identical sites in the structure. Therefore, technically, a lattice cannot be distorted. However, this review has been written in keeping with the terminology widely used within the HEA community.

  2. It should be noted that interstitial solute atoms can produce asymmetric distortions in the host lattice and, therefore, the associated strain fields can have both hydrostatic and deviatoric components.

  3. Generally atomic displacements, u, are quoted as root mean square average of the individual displacements of all the atoms in a system. These can be calculated from the Debye–Waller factor, U, by u = √U.

References

  1. J. Yeh, S. Chen, S. Lin, J. Gan, T. Chin, T. Shun, C. Tsau, and S. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. J-W. Yeh: Recent progress in high-entropy alloys. Ann. Chim. 31, 633 (2006).

    Article  CAS  Google Scholar 

  3. E.J. Pickering and N.G. Jones: High entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).

    Article  CAS  Google Scholar 

  4. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 488 (2017).

    Article  Google Scholar 

  5. F.J. Wang, Y. Zhang, and G.L. Chen: Atomic packing efficiency and phase transition in a high entropy alloy. J. Alloys Compd. 478, 321 (2009).

    Article  CAS  Google Scholar 

  6. E.J. Pickering, H.J. Stone, and N.G. Jones: Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu. Mater. Sci. Eng., A 645, 65 (2015).

    Article  CAS  Google Scholar 

  7. P.J. Withers and H.K.D.H. Bhadeshia: Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 17, 355 (2001).

    Article  CAS  Google Scholar 

  8. D. Dye, H. Stone, and R. Reed: Intergranular and interphase microstresses. Curr. Opin. Solid State Mater. Sci. 5, 31 (2001).

    Article  CAS  Google Scholar 

  9. W. Hume-Rothery, G.W. Mabbott, and K.M. Channel Evans: The freezing points, melting points and solid solubilty limits of the alloys of silver and copper with elements of the B sub-groups. Philos. Trans. R. Soc., A 233, 1 (1934).

    CAS  Google Scholar 

  10. W. Hume-Rothery, R.E. Smallman, and C.W. Haworth: The Structure of Metals and Alloys, 5th ed. (The Institute of Metals, London, U.K., 1969).

    Google Scholar 

  11. J.T. Waber, K. Gschneidner, A.C. Larson, and M.Y. Prince: Prediction of solid solubility in metallic alloys. Trans. Metall. Soc. AIME 227, 717 (1963).

    CAS  Google Scholar 

  12. P. Debye: Interferenz von Röntgenstahlen und Wärmebewegung. Ann. Phys. 348, 49 (1913).

    Article  Google Scholar 

  13. I. Waller: Zur Frage der Einwirkung der Wärmebewegung auf die Intergerenz von Röntgenstrahlen. Z. Phys. 17, 398 (1923).

    Article  CAS  Google Scholar 

  14. H.M. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  15. K. Huang: X-ray reflexions from dilute solid solutions. Proc. R. Soc. London, Ser. A 190, 102 (1947).

    Article  CAS  Google Scholar 

  16. B. Borie: X-ray diffraction effects of atomic size in alloys. Acta Crystallogr. 10, 89 (1957).

    Article  CAS  Google Scholar 

  17. H.Y. Playford, L.R. Owen, I. Levin, and M.G. Tucker: New insights into complex materials using reverse Monte Carlo modeling. Annu. Rev. Mater. Res. 44, 429 (2014).

    Article  CAS  Google Scholar 

  18. T. Egami and S.J.L. Billinge: Underneath the Bragg Peaks, 2nd ed. (Elsevier, Oxford, U.K., 2012).

    Google Scholar 

  19. L.R. Owen: The Analysis of Local Structural Effects in Alloys Using Total Scattering and Reverse Monte Carlo Techniques (University of Cambridge, Cambridge, U.K., 2017).

    Google Scholar 

  20. C.L. Farrow, P. Juhas, J.W. Lui, D. Bryndin, E.S. Bozin, J. Bloch, T. Proffen, and S.J.L. Billinge: PDFfit2 and PDFGui: Computer programs for studying nanostructure in crystals. J. Phys.: Condens. Matter 19, 335219 (2007).

    CAS  Google Scholar 

  21. R.L. McGreevy and L. Pusztai: Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Mol. Simul. 1, 359 (1988).

    Article  Google Scholar 

  22. M.G. Tucker, D.A. Keen, M.T. Dove, A.L. Goodwin, and Q. Hui: RMCProfile: Reverse Monte Carlo for polycrystalline materials. J. Phys.: Condens. Matter 19, 335218 (2007).

    Google Scholar 

  23. M.J. Hÿtch, C. Gatel, F. Houdellier, and E. Snoeck: Darkfield electron holography for strain mapping at the nanoscale. Microsc. Anal. 26, 6 (2012).

    Google Scholar 

  24. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck: Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086 (2008).

    Article  Google Scholar 

  25. A. Béché, J.L. Rouvière, J.P. Barnes, and D. Cooper: Dark field electron holography for strain measurement. Ultramicroscopy 111, 227 (2011).

    Article  Google Scholar 

  26. P.L. Galindo, S. Kret, A.M. Sanchez, J-Y. Laval, A. Yáñez, J. Pizarro, E. Guerrero, T. Ben, and S.I. Molina: The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186 (2007).

    Article  CAS  Google Scholar 

  27. M.J. Hÿtch, E. Snoeck, and R. Kilaas: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131 (1998).

    Article  Google Scholar 

  28. J.L. Rouvière and E. Sarigiannidou: Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 106, 1 (2005).

    Article  Google Scholar 

  29. V.B. Ozdol, C. Gammer, X.G. Jin, P. Ercius, C. Ophus, J. Ciston, and A.M. Minor: Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl. Phys. Lett. 106, 253107 (2015).

    Article  Google Scholar 

  30. D. Cooper, T. Denneulin, N. Bernier, A. Béché, and J-L. Rouvière: Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron 80, 145 (2016).

    Article  CAS  Google Scholar 

  31. L. Jones and P.D. Nellist: Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc. Microanal. 19, 1050 (2013).

    Article  CAS  Google Scholar 

  32. N. Braidy, Y. Le Bouar, S. Lazar, and C. Ricolleau: Correcting scanning instabilities from images of periodic structures. Ultramicroscopy 118, 67 (2012).

    Article  CAS  Google Scholar 

  33. M.J. Hÿtch, J-L. Putaux, and J-M. Pénisson: Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423, 270 (2003).

    Article  Google Scholar 

  34. K. Usuda, T. Numata, T. Irisawa, N. Hirashita, and S. Takagi: Strain characterization in SOI and strained-Si on SGOI MOSFET channel using nano-beam electron diffraction (NBD). Mater. Sci. Eng., B 124–125, 143 (2005).

    Article  Google Scholar 

  35. R. Vincent and P.A. Midgley: Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271 (1994).

    Article  CAS  Google Scholar 

  36. J-L. Rouvière, A. Béché, Y. Martin, T. Denneulin, and D. Cooper: Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl. Phys. Lett. 103, 241913 (2013).

    Article  Google Scholar 

  37. B.D. Cullity: Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Reading, 1956).

    Google Scholar 

  38. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533 (2004).

    Article  Google Scholar 

  39. J.W. Yeh: Physical metallurgy of high-entropy alloys. JOM 67, 2254 (2015).

    Article  CAS  Google Scholar 

  40. C. Tong, Y. Chen, S. Chen, J. Yeh, T. Shun, C. Tsau, S. Lin, and S. Chang: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

  41. H-P. Chou, Y-S. Chang, S-K. Chen, and J-W. Yeh: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng., B 163, 184 (2009).

    Article  CAS  Google Scholar 

  42. J-W. Yeh, S-Y. Chang, Y-D. Hong, S-K. Chen, and S-J. Lin: Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater. Chem. Phys. 103, 41 (2007).

    Article  CAS  Google Scholar 

  43. W-R. Wang, W-L. Wang, S-C. Wang, Y-C. Tsai, C-H. Lai, and J-W. Yeh: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  44. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).

    Article  CAS  Google Scholar 

  45. N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George: Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening. AIP Adv. 6, 125008 (2016).

    Article  Google Scholar 

  46. H. Oh, D. Ma, G. Leyson, B. Grabowski, E. Park, F. Körmann, and D. Raabe: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).

    Article  Google Scholar 

  47. L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones: An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122, 11 (2017).

    Article  CAS  Google Scholar 

  48. W. Guo, W. Dmowski, J-Y. Noh, P. Rack, P.K. Liaw, and T. Egami: Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study. Metall. Mater. Trans. A 44, 1994 (2012).

    Article  Google Scholar 

  49. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 1 (2015).

    Article  Google Scholar 

  50. L.R. Owen, H.Y. Playford, H.J. Stone, and M.G. Tucker: A new approach to the analysis of short-range order in alloys using total scattering. Acta Mater. 115, 155 (2016).

    Article  CAS  Google Scholar 

  51. N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, and E.P. George: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 35863, 1 (2016).

    Google Scholar 

  52. F. Otto, Y. Yang, H. Bei, and E.P. George: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).

    Article  CAS  Google Scholar 

  53. I. Toda-Caraballo and P.E.J. Rivera-Díaz-del-Castillo: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).

    Article  CAS  Google Scholar 

  54. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  55. H. Song, F. Tian, Q-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 55 (2017).

    Google Scholar 

  56. Y.F. Ye, Y.H. Zhang, Q.F. He, Y. Zhuang, S. Wang, S.Q. Shi, A. Hu, J. Fan, and Y. Yang: Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 150, 182 (2018).

    Article  CAS  Google Scholar 

  57. K.A. Christofidou, E.J. Pickering, P. Orsatti, P.M. Mignanelli, T.J.A. Slater, H.J. Stone, and N.G. Jones: On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics 92, 84 (2018).

    Article  CAS  Google Scholar 

  58. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Mater. 113, 106 (2016).

    Article  CAS  Google Scholar 

  59. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  60. S. Guo, Q. Hu, C. Ng, and C.T. Liu: More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  61. J-W. Yeh: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank K.A. Christofidou and D. Johnstone for useful discussions and acknowledge the EPSRC/Rolls-Royce Strategic Partnership for support under EP/M005607/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Gwilym Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owen, L.R., Jones, N.G. Lattice distortions in high-entropy alloys. Journal of Materials Research 33, 2954–2969 (2018). https://doi.org/10.1557/jmr.2018.322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.322