Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-temperature (1500 °C) interactions of promising environmental-barrier coating (EBC) ceramics in the rare-earth (RE) pyrosilicate system, Yb(2-x)YxSi2O7 (x = 0, 0.2, 1, or 2), with three different calcia–magnesia–aluminosiliate (CMAS) glass compositions, are explored. Only the Ca/Si ratio is varied in the CMAS: 0.76, 0.44, or 0.10. Interaction between the highest Ca/Si CMAS and the EBC ceramic with the lowest x (=0, Yb2Si2O7) promotes no reaction but the formation of “blister” cracks. In contrast, the highest x (=2, Y2Si2O7) promotes the formation of an apatite reaction product, but no “blister” cracks. Observationally, it is found that a decrease in the CMAS Ca/Si ratio (0.76–0.10) and a decrease in Y-content decreases the propensity for reaction crystallization (apatite formation) and “blister” cracks. These results are rationalized based on the relative affinities between Ca2+ in the CMAS and Y3+ or Yb3+ in the EBC ceramics, suggesting a way to tune the CMAS interactions in RE pyrosilicate solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Table I:
Figure 2:
Figure 3:
Table II:
Figure 4:
Table III:
Figure 5:
Table IV:
Figure 6:
Table V:

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002).

    CAS  Google Scholar 

  2. R. Darolia: Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 58, 315–348 (2013).

    CAS  Google Scholar 

  3. D.R. Clarke, M. Oechsner, and N.P. Padture: Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37, 891–898 (2012).

    CAS  Google Scholar 

  4. N.P. Padture: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016).

    CAS  Google Scholar 

  5. J.H. Perepezko: The hotter the engine, the better. Science 326, 1068–1069 (2009).

    CAS  Google Scholar 

  6. N.P. Bansal and J. Lamon: Ceramic Matrix Composites: Materials, Modelling, and Technology (John Wiley & Sons, Hoboken, NJ, USA, 2014).

    Google Scholar 

  7. F.W. Zok: Ceramic-matrix composites enable revolutionary gains in turbine engine efficiency. Am. Ceram. Soc. Bull. 95, 22–28 (2016).

    CAS  Google Scholar 

  8. E.J. Opila, J.L. Smialek, R.C. Robinson, D.S. Fox, and N.S. Jacobson: SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model. J. Am. Ceram. Soc. 82, 1826–1834 (1999).

    CAS  Google Scholar 

  9. P.J. Meschter, E.J. Opila, and N.S. Jacobson: Water vapor–mediated volatilization of high-temperature materials. Annu. Rev. Mater. Res. 43, 559–588 (2013).

    CAS  Google Scholar 

  10. D. Zhu: Advanced environmental barrier coatings. In Engineered Ceramics: Current Status and Future Prospects, T. Ohji and M. Singh, eds. (John Wiley & Sons, Hoboken, NJ, USA, 2016), pp. 187–202.

    Google Scholar 

  11. K.N. Lee: Current status of environmental barrier coatings for Si-Based ceramics. Surf. Coat. Technol. 133–134, 1–7 (2000).

    Google Scholar 

  12. K.N. Lee, D.S. Fox, and N.P. Bansal: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25, 1705–1715 (2005).

    CAS  Google Scholar 

  13. E. Bakan, D.E. Mack, G. Mauer, R. Vaßen, J. Lamon, and N.P. Padture: High-temperature materials for power generation in gas turbines. In Advanced Ceramics for Energy Conversion and Storage, O. Guillon, ed. (Elsevier, Cambridge, MA, 2020), pp. 3–62.

    Google Scholar 

  14. C.G. Levi, J.W. Hutchinson, M.-H. Vidal-Sétif, and C.A. Johnson: Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 37, 932–941 (2012).

    CAS  Google Scholar 

  15. D.L. Poerschke, R.W. Jackson, and C.G. Levi: Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu. Rev. Mater. Res. 47, 297–330 (2017).

    CAS  Google Scholar 

  16. A.R. Krause, B.S. Senturk, H.F. Garces, G. Dwivedi, A.L. Ortiz, S. Sampath, and N.P. Padture: 2ZrO2⋅Y2O3 Thermal barrier coatings resistant to degradation by molten CMAS: Part I, Optical basicity considerations and processing. J. Am. Ceram. Soc. 97, 3943–3949 (2014).

    CAS  Google Scholar 

  17. J. Liu, L. Zhang, Q. Liu, L. Cheng, and Y. Wang: Calcium–magnesium–aluminosilicate corrosion behaviors of rare-earth disilicates at 1400°C. J. Eur. Ceram. Soc. 33, 3419–3428 (2013).

    CAS  Google Scholar 

  18. N.L. Ahlborg and D. Zhu: Calcium–magnesium–aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf. Coat. Technol. 237, 79–87 (2013).

    CAS  Google Scholar 

  19. J.L. Stokes, B.J. Harder, V.L. Wiesner, and D.E. Wolfe: High-temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials. J. Eur. Ceram. Soc. 39, 5059–5067 (2019).

    CAS  Google Scholar 

  20. W.D. Summers, D.L. Poerschke, D. Park, J.H. Shaw, F.W. Zok, and C.G. Levi: Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate. Acta Mater. 160, 34–46 (2018).

    CAS  Google Scholar 

  21. V.L. Wiesner, B.J. Harder, and N.P. Bansal: High-temperature interactions of desert sand CMAS glass with yttrium disilicate environmental barrier coating material. Ceram. Int. 44, 22738–22743 (2018).

    CAS  Google Scholar 

  22. F. Stolzenburg, P. Kenesei, J. Almer, K.N. Lee, M.T. Johnson, and K.T. Faber: The influence of calcium–magnesium–aluminosilicate deposits on internal stresses in Yb2Si2O7 multilayer environmental barrier coatings. Acta Mater. 105, 189–198 (2016).

    CAS  Google Scholar 

  23. F. Stolzenburg, M.T. Johnson, K.N. Lee, N.S. Jacobson, and K.T. Faber: The interaction of calcium–magnesium–aluminosilicate with ytterbium silicate environmental barrier materials. Surf. Coat. Technol. 284, 44–50 (2015).

    CAS  Google Scholar 

  24. H. Zhao, B.T. Richards, C.G. Levi, and H.N.G. Wadley: Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surf. Coat. Technol. 288, 151–162 (2016).

    CAS  Google Scholar 

  25. D.L. Poerschke, D.D. Hass, S. Eustis, G.G.E. Seward, J.S. Van Sluytman, and C.G. Levi: Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites. J. Am. Ceram. Soc. 98, 278–286 (2015).

    CAS  Google Scholar 

  26. G. Costa, B.J. Harder, V.L. Wiesner, D. Zhu, N. Bansal, K.N. Lee, N.S. Jacobson, D. Kapush, S.V. Ushakov, and A. Navrotsky: Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents. J. Am. Ceram. Soc. 102, 2948–2964 (2019).

    CAS  Google Scholar 

  27. Z. Tian, X. Ren, Y. Lei, L. Zheng, W. Geng, J. Zhang, and J. Wang: Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. J. Eur. Ceram. Soc. 39, 4245–4254 (2019).

    CAS  Google Scholar 

  28. L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, and N.P. Padture: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc. 38, 3914–3924 (2018).

    CAS  Google Scholar 

  29. L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, and N.P. Padture: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7. J. Eur. Ceram. Soc. 38, 3905–3913 (2018).

    CAS  Google Scholar 

  30. L.R. Turcer and N.P. Padture: Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics. Scr. Mater. 154, 111–117 (2018).

    CAS  Google Scholar 

  31. J. Felsche: The crystal chemistry of the rare-earth silicates. In Rare Earths, (Springer Berlin, Heidelberg, 1973); pp. 99–197.

    Google Scholar 

  32. A.J. Fernández-Carrión, M.D. Alba, A. Escudero, and A.I. Becerro: Solid solubility of Yb2Si2O7 in β-, γ- and δ-Y2Si2O7. J. Solid State Chem. 184, 1882–1889 (2011).

    Google Scholar 

  33. N. Maier, G. Rixecker, and K.G. Nickel: Formation and stability of Gd, Y, Yb and Lu disilicates and their solid solutions. J. Solid State Chem. 179, 1630–1635 (2006).

    CAS  Google Scholar 

  34. J.M. Drexler, A.L. Ortiz, and N.P. Padture: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 60, 5437–5447 (2012).

    CAS  Google Scholar 

  35. J.L. Smialek, F.A. Archer, and R.G. Garlick: Turbine airfoil degradation in the Persian Gulf War. JOM 46, 39–41 (1994).

    CAS  Google Scholar 

  36. J.M. Drexler, A.D. Gledhill, K. Shinoda, A.L. Vasiliev, K.M. Reddy, S. Sampath, and N.P. Padture: Jet engine coatings for resisting volcanic ash damage. Adv. Mater. 23, 2419–2424 (2011).

    CAS  Google Scholar 

  37. A. Quintas, D. Caurant, O. Majérus, and T. Charpentier: Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass. In XXIst International Congress on Glass (ICG 2007), (Strasbourg, France, 2007).

    Google Scholar 

  38. J.L. Stokes, B.J. Harder, V.L. Wiesner, and D.E. Wolfe: Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials. J. Am. Ceram. Soc. 103, 622–634 (2020).

    CAS  Google Scholar 

  39. G. Costa, B.J. Harder, N.P. Bansal, B.A. Kowalski, and J.L. Stokes: Thermochemistry of calcium rare-earth silicate oxyapatites. J. Am. Ceram. Soc. 103, 1446–1453 (2020).

    CAS  Google Scholar 

  40. A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 55, 6734–6745 (2007).

    CAS  Google Scholar 

  41. Z. Sun, Y. Zhou, and M. Li: Low-temperature synthesis and sintering of γ-Y2Si2O7. J. Mater. Res. 21, 1443–1450 (2006).

    CAS  Google Scholar 

  42. J.M. Drexler, K. Shinoda, A.L. Ortiz, D. Li, A.L. Vasiliev, A.D. Gledhill, S. Sampath, and N.P. Padture: Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 58, 6835–6844 (2010).

    CAS  Google Scholar 

Download references

Acknowledgments

The support from the Office of Naval Research (Grant No. N00014-18-1-2647, monitored by Dr. D.A. Shifler) and the Department of Education (Grant No. P200A150037) GAANN fellowship (to L.R.T.) is gratefully acknowledged. We thank Ms. Mollie Koval, Mr. Qizhong Wang, Dr. Arundhati Sengupta, Dr. Hadas Sternlicht, and Dr. Hector Garces of Brown University for experimental assistance and fruitful discussions, and Dr. Rebekah Webster of the University of Virginia for performing the viscosity calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin P. Padture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcer, L.R., Padture, N.P. Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass. Journal of Materials Research 35, 2373–2384 (2020). https://doi.org/10.1557/jmr.2020.132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.132

Keywords