Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Geometrical lattice engineering of complex oxide heterostructures: a designer approach to emergent quantum states

  • Functional Oxides Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Epitaxial heterostructures composed of complex oxides have fascinated researchers for over a decade as they offer multiple degrees of freedom to unveil emergent many-body phenomena often unattainable in bulk. Recently, apart from stabilizing such artificial structures along the conventional [001]-direction, tuning the growth direction along unconventional crystallographic axes has been highlighted as a promising route to realize novel quantum many-body phases. Here we illustrate this rapidly developing field of geometrical lattice engineering with the emphasis on a few prototypical examples of the recent experimental efforts to design complex oxide heterostructures along the (111) orientation for quantum phase discovery and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. Chakhalian, J.W. Freeland, A.J. Millis, C. Panagopoulos, and J.M. Rondinelli: Colloquium: Emergent properties in plane view: strong correlations at oxide interfaces. Rev. Mod. Phys. 86, 1189 (2014).

    Article  CAS  Google Scholar 

  2. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103 (2012).

    Article  CAS  Google Scholar 

  3. J. Chakhalian, A.J. Millis, and J. Rondinelli: Whither the oxide interface. Nat Mater. 11, 92 (2012).

    Article  CAS  Google Scholar 

  4. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J-M. Triscone: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).

    Article  CAS  Google Scholar 

  5. S. Stemmer and S.J. Allen: Two-dimensional electron gases at complex oxide interfaces. Annu. Rev. Mater. Res. 44, 151 (2014).

    Article  CAS  Google Scholar 

  6. K.R. Poeppelmeier, and J.M. Rondinelli: Oxide interfaces: mismatched lattices patched up. Nat Chem. 8, 292 (2016).

    Article  CAS  Google Scholar 

  7. J. Liu, M. Kargarian, M. Kareev, B. Gray, P.J. Ryan, A. Cruz, N. Tahir, Y-D. Chuang, J. Guo, J.M. Rondinelli, J.W. Freeland, G.A. Fiete, and J. Chakhalian: Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat Commun. 4, 2714 (2013).

    Article  CAS  Google Scholar 

  8. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, and C.B. Eom: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).

    Article  CAS  Google Scholar 

  9. J. Chakhalian, J.M. Rondinelli, J. Liu, B.A. Gray, M. Kareev, E.J. Moon, N. Prasai, J.L. Cohn, M. Varela, I.C. Tung, M.J. Bedzyk, S.G. Altendorf, F. Strigari, B. Dabrowski, L.H. Tjeng, P.J. Ryan, and J.W. Freeland: Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. Phys. Rev. Lett. 107, 116805 (2011).

    Article  CAS  Google Scholar 

  10. D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto: Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).

    Article  CAS  Google Scholar 

  11. K. Yang, W. Zhu, D. Xiao, S. Okamoto, Z. Wang, and Y. Ran: Possible interaction-driven topological phases in (111) bilayers of LaNiO3. Phys. Rev. B 84, 201104(R) (2011).

    Article  CAS  Google Scholar 

  12. A. Ruegg and G.A. Fiete: Topological insulators from complex orbital order in transition-metal oxides heterostructures. Phys. Rev. B 84, 201103(R) (2011).

    Article  CAS  Google Scholar 

  13. X. Hu, A. Ruegg, and G.A. Fiete: Topological phases in layered pyro-chlore oxide thin films along the [111] direction. Phys. Rev. B 86, 235141 (2012).

    Article  CAS  Google Scholar 

  14. Y. Wang, Z. Wang, Z. Fang, and X. Dai: Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3. Phys. Rev. B 91, 125139 (2015).

    Article  CAS  Google Scholar 

  15. H.M. Guo and M. Franz: Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    Article  CAS  Google Scholar 

  16. T. Han, J.S. Helton, S. Chu, D.G. Nocera, J.A. Rodriguez-Rivera, C. Broholm, and Y.S. Lee: Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406 (2012).

    Article  CAS  Google Scholar 

  17. H.-M. Guo and M. Franz: Three-dimensional topological insulators on the pyrochlore lattice. Phys. Rev. Lett. 103, 206805 (2009).

    Article  CAS  Google Scholar 

  18. X. Hu, Z. Zhong, and G.A. Fiete: First principles prediction of topological phases in thin films of pyrochlore iridates. Sci. Rep. 5, 11072 (2015).

    Article  CAS  Google Scholar 

  19. S. Okamoto: Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with a strong spin-orbit coupling. Phys. Rev. Lett 110, 066403 (2013).

    Article  CAS  Google Scholar 

  20. A.M. Cook and A. Paramekanti: Double perovskite heterostructures: magnetism, Chern bands and Chern insulators. Phys. Rev. Lett. 113, 077203 (2014).

    Article  CAS  Google Scholar 

  21. J.L. Lado, V. Pardo, and D. Baldomir: Ab initio study of Z2 topological phases in perovskite (111) (SrTiO3)7/(SrlrO3)2 and (KTaO3)7/(KPtO3)2 multilayers. Phys. Rev. B 88, 155119 (2013).

    Google Scholar 

  22. T. Cai, X. Li, F. Wang, S. Ju, J. Feng, and C. Gong: Single-spin Dirac fer-mion and Chern insulator based on simple oxides. Nano Lett. 15, 6434 (2015).

    Article  CAS  Google Scholar 

  23. S. Middey, D. Meyers, M. Kareev, E.J. Moon, B.A. Gray, X. Liu, J.W. Freeland, and J. Chakhalian: Epitaxial growth of (111)-oriented LaAIO3/LaNiO3 ultra-thin superlattices. Appl Phys. Lett. 101, 261602 (2012).

    Article  CAS  Google Scholar 

  24. Xiaoran Liu, D. Choudhury, Yanwei Cao, S. Middey, M. Kareev, D. Meyers, J.-W. Kim, P. Ryan, and J. Chakhalian: Epitaxial growth of (111)-oriented spinel CoCr2O4/AI2O3 heterostructures. Appl. Phys. Lett 106, 071603 (2015).

    Article  CAS  Google Scholar 

  25. S. Middey, D. Meyers, D. Doennig, M. Kareev, X. Liu, Y. Cao, Z. Yang, J. Shi, L. Gu, P.J. Ryan, R. Pentcheva, J.W. Freeland, and J. Chakhalian: Mott electrons in an artificial graphenelike crystal of rare-earch nickelate. Phys. Rev. Lett. 116, 056801 (2016).

    Article  CAS  Google Scholar 

  26. D. Hirai, J. Matsuno, and H. Takagi: Fabrication of (111)-oriented Ca0.5Sr0.5lrO3/SrTiO3 superlattices-a designed playground for honeycomb physics. APL Mater. 3, 041508 (2015).

    Article  CAS  Google Scholar 

  27. T.J. Anderson, S. Ryu, H. Zhou, L. Xie, J.P. Podkaminer, Y. Ma, J. Irwin, X.Q. Pan, M.S. Rzchowski, and C.B. Eom: Metastable honeycomb SrTiO3/SrlrO3 heterostructures. Appi. Phys. Lett. 108, 151604 (2016).

    Article  CAS  Google Scholar 

  28. G. Panomsuwan, O. Takai, and N. Saito: Epitaxial growth of (111)-oriented BaTiO3/SrTiO3 perovskite superlattices on Pt(111)/Ti/AI2O3 (0001) substrates. Appi. Phys. Lett. 103, 112902 (2013).

    Article  CAS  Google Scholar 

  29. F. Mila: Quantum spin liquids. Eur. J. Phys. 21, 499 (2000).

    Article  CAS  Google Scholar 

  30. S.T. Bramwell and M.J.P. Gingras: Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495 (2001).

    Article  CAS  Google Scholar 

  31. S. Lee, H. Takagi, D. Louca, M. Matsuda, S. Ji, H. Ueda, Y. Ueda, T. Katsufuji, J. Chung, S. Park, S. Cheong, and C. Broholm: Frustrated magnetism and cooperative phase transitions in spinels. J. Phys. Soc. Jpn. 79, 011004 (2010).

    Article  CAS  Google Scholar 

  32. A.P. Ramirez: Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453 (1994).

    Article  CAS  Google Scholar 

  33. J.S. Gardner, M.J.P. Gingras, and J.E. Greedan: Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53 (2010).

    Article  CAS  Google Scholar 

  34. K. Binder and A.P. Young: Spin glass: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).

    Article  CAS  Google Scholar 

  35. M. Punk, D. Chowdhury, and S. Sachdev: Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice. Nat. Phys. 10, 289 (2014).

    Article  CAS  Google Scholar 

  36. F. Pollmann, P. Fulde, and K. Shtengel: Kinetic ferromagnetism on a kagome lattice. Phys. Rev. Lett. 100, 136404 (2008).

    Article  CAS  Google Scholar 

  37. S. Yu and J. Li: Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    Article  CAS  Google Scholar 

  38. Y. Liu, V.C. Kravstsov, D.A. Beauchamp, J.F. Eubank, and M. Eddaoudi: 4-connected metal-organic assemblies mediated via heterochelation and bridging of single metal ions: kagome lattice and the M6L12 octahedron. J. Am. Chem. Soc. 127, 7266 (2005).

    Article  CAS  Google Scholar 

  39. E.A. Nytko, J.S. Helton, P. Millier, and D.G. Nocera: A structurally perfect S = ½ metal-organic hybrid kagome antiferromagnet. J. Am. Chem. Soc. 130, 2922 (2008).

    Article  CAS  Google Scholar 

  40. C.A.F. Vaz, V.E. Henrich, C.H. Ann, and E.I. Altman: Growth and characterization of thin epitaxial Co3O4 (111) films. J. Cryst Growth 311, 2648 (2009).

    Article  CAS  Google Scholar 

  41. Xiaoran Liu, M. Kareev, Y. Cao, J. Liu, S. Middey, D. Meyers, J.W. Freeland, and J. Chakhalian: Electronic and magnetic properties of (111)-oriented CoCr2O4 epitaxial thin film. Appi. Phys. Lett. 105, 042401 (2014).

    Article  CAS  Google Scholar 

  42. A. Yang, Z. Chen, X. Zuo, J. Kirkland, C. Vittoria, and V.G. Harris: Cation-disorder-enhanced magnetization in pulsed-laser-deposition CuFe2O4 films. Appi. Phys. Lett. 86, 252510 (2005).

    Article  CAS  Google Scholar 

  43. J.X. Ma, D. Mazumdar, G. Kim, H. Sato, N.Z. Bao, and A. Gupta: A robust approach for the growth of epitaxial spinel ferrite films. J. Appi. Phys. 108, 063917 (2010).

    Article  CAS  Google Scholar 

  44. S. Matzen, J.-B. Moussy, R. Mattana, K. Bouzehouane, C. Deranlot, F. Petroff, J.C. Cezar, M.-A. Arrio, Ph. Sainctavit, C. Gatel, B. Warot-Fonrose, and Y. Zheng: Epitaxial growth and ferrimagnetic behavior of MnFe2O4 (111) ultrathin layers for room-temperature spin filtering. Phys. Rev. B 83, 184402 (2011).

    Article  CAS  Google Scholar 

  45. U. Liiders, M. Bibes, J. Bobo, M. Cantoni, R. Bertacco, and J. Fontcuberta: Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films. Phys. Rev. B 71, 134419 (2005).

    Article  CAS  Google Scholar 

  46. R.V. Chopdekar, M. Liberati, Y. Takamura, L.F. Kourkoutis, J.S. Bettinger, B.B. Nelson-Cheeseman, E. Arenholz, A. Doran, A. Scholl, D.A. Muller, and Y. Suzuki: Magnetism at spinel thin film interfaces probed through soft X-ray spectroscopy techniques. J. Magn. Magn. Mater. 322, 2915 (2010).

    Article  CAS  Google Scholar 

  47. H. Yahiro, H. Tanaka, Y. Yamamoto, and T. Kawai: Construction of ZnFe2O4/ZnGa2O4 spinel-type artificial superlattice by pulsed laser deposition. Jpn. J. Appl. Phys. 41, 5153 (2002).

    Article  CAS  Google Scholar 

  48. T. Murata, Y. Kozuka, M. Uchida, and M. Kawasaki: Magnetic properties of spin frustrated spinel ZnFe2O4/ZnCr2O4 superlattices. J. Appl. Phys. 118, 193901 (2015).

    Article  CAS  Google Scholar 

  49. F. Wang and Y. Ran: Nearly flat band with Chern number C-2 on the dice lattice. Phys. Rev. B 84, 241103(R) (2011).

    Article  CAS  Google Scholar 

  50. F.D.M. Haldane: Model for a quantum Hall effect without Landau levels: condensed matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).

    Article  CAS  Google Scholar 

  51. A. Ruegg, C. Mitra, A.A. Demkov, and G.A. Fiete: Electronic structure of (LaNiO3)2/(LaAIO3)N heterostructures grown along [111]. Phys. Rev. B 85, 245131 (2012).

    Article  CAS  Google Scholar 

  52. A. Rüegg, C. Mitra, A.A. Demkov, and G.A. Fiete: Lattice distortion effects on topological phases in (LaNiO3)2/(LaAIO3)N heterostructures grown along the [111] direction. Phys. Rev. B 88, 115146 (2013).

    Article  CAS  Google Scholar 

  53. D. Doennig, W.E. Pickett, and R. Pentcheva: Confinement-driven transitions between topological and Mott phases in (LaNiO3)/(LaAIO3)M (111) superlattices. Phys. Rev. B 89, 121110(R) (2014).

    Article  CAS  Google Scholar 

  54. Y. Weng, X. Huang, Y. Yao, and S. Dong: Topological magnetic phase in LaMnO3 (111) bilayer. Phys. Rev. B 92, 195114 (2015).

    Article  CAS  Google Scholar 

  55. H.A. Tahini, F. Cossu, N. Singh, S.C. Smith, and U. Schwingenschlögl: Electronic phase transitions under hydrostatic pressure in LaMn03 (111) bilayers sandwiched between LaAIO3. Phys. Rev. B 93, 035117 (2016).

    Article  CAS  Google Scholar 

  56. D. Doennig, S. Baidya, W.E. Pickett, and R. Pentcheva: Design of Chern and Mott insulators in buckled 3d oxide honeycomb lattices. Phys. Rev. B 93, 165145 (2016).

    Article  CAS  Google Scholar 

  57. B. Ye, A. Mesaros, and Y. Ran: Possible correlation-driven odd-parity superconductivity in LaNi7/8Co1/8O3 (111) bilayers. Phys. Rev. B 89, 201111 (R) (2014).

    Article  CAS  Google Scholar 

  58. D. Doennig, W.E. Pickett, and R. Pentcheva: Massive symmetry breaking in LaAIO3/SrTiO3 (111) quantum wells: a three-orbital strongly correlated generalization of granphene. Phys. Rev. Lett. 111, 126804 (2013).

    Article  CAS  Google Scholar 

  59. S. Okamoto, W. Zhu, Y. Nomura, R. Arita, D. Xiao, and N. Nagaosa: Correlation effects in (111) bilayers of perovskite transition-metal oxides. Phys. Rev. B 89, 195121 (2014).

    Article  CAS  Google Scholar 

  60. M.I. Medarde: Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys. Condens. Matter 9, 1679 (1997).

    Article  CAS  Google Scholar 

  61. G. Catalan: Progress in perovskite nickelate research. Phase Transit. 81, 729 (2008).

    Article  CAS  Google Scholar 

  62. S. Middey, J. Chakhalian, P. Mahadevan, J.W. Freeland, A.J. Millis, and D.D. Sarma: Physics of ultrathin films and heterostructures of rare-earch nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016).

    Article  CAS  Google Scholar 

  63. J.L. Blok, X. Wan, G. Koster, D.H.A. Blank, and G. Rijnders: Epitaxial oxide growth on polar (111) surfaces. Appl. Phys. Lett. 99, 151917 (2011).

    Article  CAS  Google Scholar 

  64. S. Middey, P. Rivera, D. Meyers, M. Kareev, X. Liu, Y. Cao, J.W. Freeland, S. Barraza-Lopez, and J. Chakhalian: Polarity compensation in ultra-thin films of complex oxides: the case of a perovskite nickelate. Sci. Rep. 4, 6819 (2014).

    Article  CAS  Google Scholar 

  65. J.W. Freeland, I.C. Tung, G. Luo, H. Zhou, J.H. Lee, S.H. Chang, D. Morgan, M.J. Bedzyk, and D.D. Fong: Polarity and the metal-insulator transition in ultrathin LaNiO3 on SrTiO3, in APS March Meeting 2016, abstract #F30.00004 (2016).

    Google Scholar 

  66. M. Gibert, P. Zubko, R. Scherwitzl, J. fniguez, and J.-M. Triscone: Exchange bias in LaNiO3-LaMnO3 superlattices. Nat. Mater. 11, 198 (2012).

    Article  CAS  Google Scholar 

  67. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, and M.D. Baró: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).

    Article  Google Scholar 

  68. M. Ali, P. Adie, C.H. Marrows, D. Greig, B.J. Hickey, and R.L. Stamps: Exchange bias using a spin glass. Nat. Mater. 6, 60 (2007).

    Article  CAS  Google Scholar 

  69. S. Dong and E. Dagotto: Quantum confinement induced magnetism in LaNiO3-LaMnO3 superlattices. Phys. Rev. B 87, 195116 (2013).

    Article  CAS  Google Scholar 

  70. A.T. Lee and M.J. Han: Charge transfer, confinement, and ferromagne-tism in LaMnO3/LaNiO3 (001) superlattices. Phys. Rev. B 88, 035126 (2013).

    Article  CAS  Google Scholar 

  71. C. Piamonteze, M. Gibert, J. Heidler, J. Dreiser, S. Rusponi, H. Brune, J.-M. Triscone, F. Nolting, and U. Staub: Interfacial properties of LaMnO3/LaNiO3 superlattices grown along (001) and (111) orientations. Phys. Rev. B 92, 014426 (2015).

    Article  CAS  Google Scholar 

  72. M.T. Anderson, K.B. Greenwood, G.A. Taylor, and K.R. Poeppelmeier: B-cation arrangements in double perovskites. Prog. Solid State Chern. 22, 197 (1993).

    Article  CAS  Google Scholar 

  73. R. Ramesh and N.A. Spaldin: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

    Article  CAS  Google Scholar 

  74. M.P. Singh, K.D. Truong, S. Jandl, and P. Fournier: Multiferroic double perovskite: opportunities, issues, and challenges. J. Appl. Phys. 107, 09D917 (2010).

    Article  CAS  Google Scholar 

  75. Y. Shimakawa, M. Azuma, and N. Ichikawa: Multiferroic compounds with double-perovskite structures. Materials 4, 153 (2011).

    Article  CAS  Google Scholar 

  76. D. Serrate, J.M. De Teresa, and M.R. Ibarra: Double perovskites with fer-romagnetism above room temperature. J. Phys: Condens. Matter 19, 023201 (2007).

    Google Scholar 

  77. H. Zhang, H. Huang, K. Haule, and D. Vanderbilt: Quantum anomalous Hall phase in (001) double-perovskite monolayers via intersite spin-orbit coupling. Phys. Rev. B 90, 165143 (2014).

    Article  CAS  Google Scholar 

  78. O. Erten, O. Meetei, A. Mukherjee, M. Randeria, N. Trivedi, and P. Woodward: Theory of half-metallic ferrimagnetism in double perovskites. Phys. Rev. Lett. 107, 257201 (2011).

    Article  CAS  Google Scholar 

  79. Y. Liu, H. Fuh, and Y. Wang: Ab Initio research on a new type of half-metallic double perovskite, A2Cr2MOe (A-IVA group elements; M= Mo, Re and W). Computation 2, 12 (2014).

    Article  CAS  Google Scholar 

  80. N. Ichikawa, M. Arai, Y. Imai, K. Hagiwara, H. Sakama, M. Azuma, Y. Shimakawa, M. Takano, Y. Kotaka, M. Yonetani, H. Fujisawa, M. Shimizu, K. Ishikawa, and Y. Cho: Multiferrosim at room temperature in BiFeO3/BiCrO3 (111) artificial superlattices. Appl. Phys. Express 1, 101302 (2008).

    Article  CAS  Google Scholar 

  81. K. Ueda, H. Tabata, and T. Kawai: Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280, 1064 (1998).

    Article  CAS  Google Scholar 

  82. K. Ueda, H. Tabata, and T. Kawai: Atomic arrangement and magnetic properties of LaFeO3-LaMnO3 artificial superlattices. Phys. Rev. B 60, R12561 (1999).

    Article  CAS  Google Scholar 

  83. J. Chang, K. Lee, M. Jun, J. Kwon, M. Kim, and S. Kim: Emergence of room-temperature magnetic ordering in artificially fabricated ordered-double-perovskite Sr2FeRuO6. Chern. Mater. 23, 2693 (2011).

    Article  CAS  Google Scholar 

  84. J. Kanamori: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87 (1959).

    Article  CAS  Google Scholar 

  85. W.E. Pickett: Ferromagnetic superlattices. Science 281, 1571a (1998).

    Article  Google Scholar 

  86. B. Gray, H. Lee, J. Liu, J. Chakhalian, and J.W. Freeland: Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite. Appl. Phys. Lett 97, 013105 (2010).

    Article  CAS  Google Scholar 

  87. S. Chakraveerty, A. Ohtomo, D. Okuyama, M. Saito, M. Okude, R. Kumai, T. Arima, Y. Tokura, S. Tsukimoto, Y. Ikuhara, and M. Kawasaki: Ferrimagnetism and spontaneous ordering of transition metals in double perovskite La2CrFeO6 films. Phys. Rev. B 84, 064436 (2011).

    Article  CAS  Google Scholar 

  88. R. Nechache, L.-P. Carignan, L. Gunawan, C. Harnagea, G.A. Botton, and D. Menard: Epitaxial thin films of multiferroic Bi2FeCrO6 with B-site cat-ionic order. J. Mater. Res. 11, 2102 (2007).

    Article  Google Scholar 

  89. B. Yang and N. Nagaosa: Emergent topological phenomena in thin films of pyrochlore iridates. Phys. Rev. Lett. 112, 246402 (2014).

    Article  CAS  Google Scholar 

  90. T.C. Fujita, Y. Kozuka, M. Uchida, A. Tsukazaki, T. Arima, and M. Kawasaki: Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry. Sci. Rep. 5, 9711 (2015).

    Article  CAS  Google Scholar 

  91. L. Bovo, X. Moya, D. Prabhakaran, Y. Soh, A.T. Boothroyd, N.D. Mathur, G. Aeppli, and S.T. Bramwell: Restoration of the third law in spin ice thin films. Nat. Commun. 5, 3439 (2014).

    Article  CAS  Google Scholar 

  92. T.C. Fujita, M. Uchida, Y. Kozuka, W. Sano, A. Tsukazaki, T. Arima, and M. Kawasaki: All-in-all-out magnetic domain wall conduction in a pyro-chlore iridate heterointerface. Phys. Rev. B 93, 064419 (2016).

    Article  CAS  Google Scholar 

  93. J. Chu, S.C. Riggs, M. Shapiro, J. Liu, C. Serero, D. Yi, M. Melissa, S. J. Suresha, C. Frontera, A. Vishwanath, X. Marti, I.R. Fisher, and R. Ramesh: Linear magnetoresistance and time reversal symmetry breaking of pyrochlore iridates Bi2lr2O7. arXiv:1309.4750.

  94. J.F. Afonso and V. Pardo: Ab initio study of nontrivial topological phases in corundum-structured (M2O3)/(AI2O3)5 multilayers. Phys. Rev. B 92, 235102 (2015).

    Article  CAS  Google Scholar 

  95. A. Ohtomo and H.Y. Hwang: A high-mobility electron gas at the LaAIO3/ SrTiO3 heterointerface. Nature 427, 423 (2004).

    Article  CAS  Google Scholar 

  96. N. Nakagawa, H. Hwang, and D.A. Muller: Why some interfaces cannot be sharp. Nat. Mater. 5, 204 (2006).

    Article  CAS  Google Scholar 

  97. G. Herranz, F. Sánchez, N. Dix, M. Scigaj, and J. Fontcuberta: High mobility conduction at (110) and (111) LaAIO3/SrTiO3 interfaces. Sci. Rep. 2, 758 (2012).

    Article  CAS  Google Scholar 

  98. S. Takei, B.M. Fregoso, V. Galitski, and S.D. Sarma: Topological superconductivity and Majorana fermions in hybrid structures involving cup-rate high-Tc superconductors. Phys. Rev. B 87, 014504 (2013).

    Article  CAS  Google Scholar 

  99. J. Chakhalian, J.W. Freeland, H.-U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer: Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114 (2007).

    Article  CAS  Google Scholar 

  100. S. Catalano, M. Gibert, V. Bisogni, F. He, R. Sutarto, M. Viret, P. Zubko, R. Scherwitzl, G.A. Sawatzky, T. Schmitt, and J.-M. Triscone: Tailoring the electronic transitions of NdNiO3 films through (111)pc oriented interfaces. APL Mater. 3, 062506 (2015).

    Article  CAS  Google Scholar 

  101. W. Ito, S. Mahajan, Y. Yoshida, T. Morishita, M. Kumagai, and K. Yabuta: Influence of crystal strain on superconductivity of a-axis oriented YBa2Cu3Ox films. Jpn. J. Appl. Phys. 33, 5701 (1994).

    Article  CAS  Google Scholar 

  102. T.H. Kim, D. Puggioni, Y. Yuan, L. Xie, H. Zhou, N. Campbell, P.J. Ryan, Y. Choi, J.-W. Kim, J.R. Patzner, S. Ryu, J.P. Podkaminer, J. Irwin, Y. Ma, C.J. Fennie, M.S. Rzchowski, X.Q. Pan, V. Gopalan, J.M. Rondinelli, and C.B. Eom: Polar metals by geometric design. Nature 533, 68 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank D. Khomskii and G. Fiete for enlightening discussions. J.C. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant No. GBMF4534. X.L. and S.M. were supported by the Department of Energy under Grant No. DE-SC0012375, and Y.C. and M.K. were supported by the DOD-ARO under Grant No. 0402–17291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chakhalian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Middey, S., Cao, Y. et al. Geometrical lattice engineering of complex oxide heterostructures: a designer approach to emergent quantum states. MRS Communications 6, 133–144 (2016). https://doi.org/10.1557/mrc.2016.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.24