Abstract
Epitaxial heterostructures composed of complex oxides have fascinated researchers for over a decade as they offer multiple degrees of freedom to unveil emergent many-body phenomena often unattainable in bulk. Recently, apart from stabilizing such artificial structures along the conventional [001]-direction, tuning the growth direction along unconventional crystallographic axes has been highlighted as a promising route to realize novel quantum many-body phases. Here we illustrate this rapidly developing field of geometrical lattice engineering with the emphasis on a few prototypical examples of the recent experimental efforts to design complex oxide heterostructures along the (111) orientation for quantum phase discovery and potential applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
J. Chakhalian, J.W. Freeland, A.J. Millis, C. Panagopoulos, and J.M. Rondinelli: Colloquium: Emergent properties in plane view: strong correlations at oxide interfaces. Rev. Mod. Phys. 86, 1189 (2014).
H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103 (2012).
J. Chakhalian, A.J. Millis, and J. Rondinelli: Whither the oxide interface. Nat Mater. 11, 92 (2012).
P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J-M. Triscone: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
S. Stemmer and S.J. Allen: Two-dimensional electron gases at complex oxide interfaces. Annu. Rev. Mater. Res. 44, 151 (2014).
K.R. Poeppelmeier, and J.M. Rondinelli: Oxide interfaces: mismatched lattices patched up. Nat Chem. 8, 292 (2016).
J. Liu, M. Kargarian, M. Kareev, B. Gray, P.J. Ryan, A. Cruz, N. Tahir, Y-D. Chuang, J. Guo, J.M. Rondinelli, J.W. Freeland, G.A. Fiete, and J. Chakhalian: Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat Commun. 4, 2714 (2013).
K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.-Q. Chen, D.G. Schlom, and C.B. Eom: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).
J. Chakhalian, J.M. Rondinelli, J. Liu, B.A. Gray, M. Kareev, E.J. Moon, N. Prasai, J.L. Cohn, M. Varela, I.C. Tung, M.J. Bedzyk, S.G. Altendorf, F. Strigari, B. Dabrowski, L.H. Tjeng, P.J. Ryan, and J.W. Freeland: Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. Phys. Rev. Lett. 107, 116805 (2011).
D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto: Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).
K. Yang, W. Zhu, D. Xiao, S. Okamoto, Z. Wang, and Y. Ran: Possible interaction-driven topological phases in (111) bilayers of LaNiO3. Phys. Rev. B 84, 201104(R) (2011).
A. Ruegg and G.A. Fiete: Topological insulators from complex orbital order in transition-metal oxides heterostructures. Phys. Rev. B 84, 201103(R) (2011).
X. Hu, A. Ruegg, and G.A. Fiete: Topological phases in layered pyro-chlore oxide thin films along the [111] direction. Phys. Rev. B 86, 235141 (2012).
Y. Wang, Z. Wang, Z. Fang, and X. Dai: Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3. Phys. Rev. B 91, 125139 (2015).
H.M. Guo and M. Franz: Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).
T. Han, J.S. Helton, S. Chu, D.G. Nocera, J.A. Rodriguez-Rivera, C. Broholm, and Y.S. Lee: Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406 (2012).
H.-M. Guo and M. Franz: Three-dimensional topological insulators on the pyrochlore lattice. Phys. Rev. Lett. 103, 206805 (2009).
X. Hu, Z. Zhong, and G.A. Fiete: First principles prediction of topological phases in thin films of pyrochlore iridates. Sci. Rep. 5, 11072 (2015).
S. Okamoto: Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with a strong spin-orbit coupling. Phys. Rev. Lett 110, 066403 (2013).
A.M. Cook and A. Paramekanti: Double perovskite heterostructures: magnetism, Chern bands and Chern insulators. Phys. Rev. Lett. 113, 077203 (2014).
J.L. Lado, V. Pardo, and D. Baldomir: Ab initio study of Z2 topological phases in perovskite (111) (SrTiO3)7/(SrlrO3)2 and (KTaO3)7/(KPtO3)2 multilayers. Phys. Rev. B 88, 155119 (2013).
T. Cai, X. Li, F. Wang, S. Ju, J. Feng, and C. Gong: Single-spin Dirac fer-mion and Chern insulator based on simple oxides. Nano Lett. 15, 6434 (2015).
S. Middey, D. Meyers, M. Kareev, E.J. Moon, B.A. Gray, X. Liu, J.W. Freeland, and J. Chakhalian: Epitaxial growth of (111)-oriented LaAIO3/LaNiO3 ultra-thin superlattices. Appl Phys. Lett. 101, 261602 (2012).
Xiaoran Liu, D. Choudhury, Yanwei Cao, S. Middey, M. Kareev, D. Meyers, J.-W. Kim, P. Ryan, and J. Chakhalian: Epitaxial growth of (111)-oriented spinel CoCr2O4/AI2O3 heterostructures. Appl. Phys. Lett 106, 071603 (2015).
S. Middey, D. Meyers, D. Doennig, M. Kareev, X. Liu, Y. Cao, Z. Yang, J. Shi, L. Gu, P.J. Ryan, R. Pentcheva, J.W. Freeland, and J. Chakhalian: Mott electrons in an artificial graphenelike crystal of rare-earch nickelate. Phys. Rev. Lett. 116, 056801 (2016).
D. Hirai, J. Matsuno, and H. Takagi: Fabrication of (111)-oriented Ca0.5Sr0.5lrO3/SrTiO3 superlattices-a designed playground for honeycomb physics. APL Mater. 3, 041508 (2015).
T.J. Anderson, S. Ryu, H. Zhou, L. Xie, J.P. Podkaminer, Y. Ma, J. Irwin, X.Q. Pan, M.S. Rzchowski, and C.B. Eom: Metastable honeycomb SrTiO3/SrlrO3 heterostructures. Appi. Phys. Lett. 108, 151604 (2016).
G. Panomsuwan, O. Takai, and N. Saito: Epitaxial growth of (111)-oriented BaTiO3/SrTiO3 perovskite superlattices on Pt(111)/Ti/AI2O3 (0001) substrates. Appi. Phys. Lett. 103, 112902 (2013).
F. Mila: Quantum spin liquids. Eur. J. Phys. 21, 499 (2000).
S.T. Bramwell and M.J.P. Gingras: Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495 (2001).
S. Lee, H. Takagi, D. Louca, M. Matsuda, S. Ji, H. Ueda, Y. Ueda, T. Katsufuji, J. Chung, S. Park, S. Cheong, and C. Broholm: Frustrated magnetism and cooperative phase transitions in spinels. J. Phys. Soc. Jpn. 79, 011004 (2010).
A.P. Ramirez: Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453 (1994).
J.S. Gardner, M.J.P. Gingras, and J.E. Greedan: Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53 (2010).
K. Binder and A.P. Young: Spin glass: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).
M. Punk, D. Chowdhury, and S. Sachdev: Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice. Nat. Phys. 10, 289 (2014).
F. Pollmann, P. Fulde, and K. Shtengel: Kinetic ferromagnetism on a kagome lattice. Phys. Rev. Lett. 100, 136404 (2008).
S. Yu and J. Li: Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).
Y. Liu, V.C. Kravstsov, D.A. Beauchamp, J.F. Eubank, and M. Eddaoudi: 4-connected metal-organic assemblies mediated via heterochelation and bridging of single metal ions: kagome lattice and the M6L12 octahedron. J. Am. Chem. Soc. 127, 7266 (2005).
E.A. Nytko, J.S. Helton, P. Millier, and D.G. Nocera: A structurally perfect S = ½ metal-organic hybrid kagome antiferromagnet. J. Am. Chem. Soc. 130, 2922 (2008).
C.A.F. Vaz, V.E. Henrich, C.H. Ann, and E.I. Altman: Growth and characterization of thin epitaxial Co3O4 (111) films. J. Cryst Growth 311, 2648 (2009).
Xiaoran Liu, M. Kareev, Y. Cao, J. Liu, S. Middey, D. Meyers, J.W. Freeland, and J. Chakhalian: Electronic and magnetic properties of (111)-oriented CoCr2O4 epitaxial thin film. Appi. Phys. Lett. 105, 042401 (2014).
A. Yang, Z. Chen, X. Zuo, J. Kirkland, C. Vittoria, and V.G. Harris: Cation-disorder-enhanced magnetization in pulsed-laser-deposition CuFe2O4 films. Appi. Phys. Lett. 86, 252510 (2005).
J.X. Ma, D. Mazumdar, G. Kim, H. Sato, N.Z. Bao, and A. Gupta: A robust approach for the growth of epitaxial spinel ferrite films. J. Appi. Phys. 108, 063917 (2010).
S. Matzen, J.-B. Moussy, R. Mattana, K. Bouzehouane, C. Deranlot, F. Petroff, J.C. Cezar, M.-A. Arrio, Ph. Sainctavit, C. Gatel, B. Warot-Fonrose, and Y. Zheng: Epitaxial growth and ferrimagnetic behavior of MnFe2O4 (111) ultrathin layers for room-temperature spin filtering. Phys. Rev. B 83, 184402 (2011).
U. Liiders, M. Bibes, J. Bobo, M. Cantoni, R. Bertacco, and J. Fontcuberta: Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films. Phys. Rev. B 71, 134419 (2005).
R.V. Chopdekar, M. Liberati, Y. Takamura, L.F. Kourkoutis, J.S. Bettinger, B.B. Nelson-Cheeseman, E. Arenholz, A. Doran, A. Scholl, D.A. Muller, and Y. Suzuki: Magnetism at spinel thin film interfaces probed through soft X-ray spectroscopy techniques. J. Magn. Magn. Mater. 322, 2915 (2010).
H. Yahiro, H. Tanaka, Y. Yamamoto, and T. Kawai: Construction of ZnFe2O4/ZnGa2O4 spinel-type artificial superlattice by pulsed laser deposition. Jpn. J. Appl. Phys. 41, 5153 (2002).
T. Murata, Y. Kozuka, M. Uchida, and M. Kawasaki: Magnetic properties of spin frustrated spinel ZnFe2O4/ZnCr2O4 superlattices. J. Appl. Phys. 118, 193901 (2015).
F. Wang and Y. Ran: Nearly flat band with Chern number C-2 on the dice lattice. Phys. Rev. B 84, 241103(R) (2011).
F.D.M. Haldane: Model for a quantum Hall effect without Landau levels: condensed matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).
A. Ruegg, C. Mitra, A.A. Demkov, and G.A. Fiete: Electronic structure of (LaNiO3)2/(LaAIO3)N heterostructures grown along [111]. Phys. Rev. B 85, 245131 (2012).
A. Rüegg, C. Mitra, A.A. Demkov, and G.A. Fiete: Lattice distortion effects on topological phases in (LaNiO3)2/(LaAIO3)N heterostructures grown along the [111] direction. Phys. Rev. B 88, 115146 (2013).
D. Doennig, W.E. Pickett, and R. Pentcheva: Confinement-driven transitions between topological and Mott phases in (LaNiO3)/(LaAIO3)M (111) superlattices. Phys. Rev. B 89, 121110(R) (2014).
Y. Weng, X. Huang, Y. Yao, and S. Dong: Topological magnetic phase in LaMnO3 (111) bilayer. Phys. Rev. B 92, 195114 (2015).
H.A. Tahini, F. Cossu, N. Singh, S.C. Smith, and U. Schwingenschlögl: Electronic phase transitions under hydrostatic pressure in LaMn03 (111) bilayers sandwiched between LaAIO3. Phys. Rev. B 93, 035117 (2016).
D. Doennig, S. Baidya, W.E. Pickett, and R. Pentcheva: Design of Chern and Mott insulators in buckled 3d oxide honeycomb lattices. Phys. Rev. B 93, 165145 (2016).
B. Ye, A. Mesaros, and Y. Ran: Possible correlation-driven odd-parity superconductivity in LaNi7/8Co1/8O3 (111) bilayers. Phys. Rev. B 89, 201111 (R) (2014).
D. Doennig, W.E. Pickett, and R. Pentcheva: Massive symmetry breaking in LaAIO3/SrTiO3 (111) quantum wells: a three-orbital strongly correlated generalization of granphene. Phys. Rev. Lett. 111, 126804 (2013).
S. Okamoto, W. Zhu, Y. Nomura, R. Arita, D. Xiao, and N. Nagaosa: Correlation effects in (111) bilayers of perovskite transition-metal oxides. Phys. Rev. B 89, 195121 (2014).
M.I. Medarde: Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys. Condens. Matter 9, 1679 (1997).
G. Catalan: Progress in perovskite nickelate research. Phase Transit. 81, 729 (2008).
S. Middey, J. Chakhalian, P. Mahadevan, J.W. Freeland, A.J. Millis, and D.D. Sarma: Physics of ultrathin films and heterostructures of rare-earch nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016).
J.L. Blok, X. Wan, G. Koster, D.H.A. Blank, and G. Rijnders: Epitaxial oxide growth on polar (111) surfaces. Appl. Phys. Lett. 99, 151917 (2011).
S. Middey, P. Rivera, D. Meyers, M. Kareev, X. Liu, Y. Cao, J.W. Freeland, S. Barraza-Lopez, and J. Chakhalian: Polarity compensation in ultra-thin films of complex oxides: the case of a perovskite nickelate. Sci. Rep. 4, 6819 (2014).
J.W. Freeland, I.C. Tung, G. Luo, H. Zhou, J.H. Lee, S.H. Chang, D. Morgan, M.J. Bedzyk, and D.D. Fong: Polarity and the metal-insulator transition in ultrathin LaNiO3 on SrTiO3, in APS March Meeting 2016, abstract #F30.00004 (2016).
M. Gibert, P. Zubko, R. Scherwitzl, J. fniguez, and J.-M. Triscone: Exchange bias in LaNiO3-LaMnO3 superlattices. Nat. Mater. 11, 198 (2012).
J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, and M.D. Baró: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).
M. Ali, P. Adie, C.H. Marrows, D. Greig, B.J. Hickey, and R.L. Stamps: Exchange bias using a spin glass. Nat. Mater. 6, 60 (2007).
S. Dong and E. Dagotto: Quantum confinement induced magnetism in LaNiO3-LaMnO3 superlattices. Phys. Rev. B 87, 195116 (2013).
A.T. Lee and M.J. Han: Charge transfer, confinement, and ferromagne-tism in LaMnO3/LaNiO3 (001) superlattices. Phys. Rev. B 88, 035126 (2013).
C. Piamonteze, M. Gibert, J. Heidler, J. Dreiser, S. Rusponi, H. Brune, J.-M. Triscone, F. Nolting, and U. Staub: Interfacial properties of LaMnO3/LaNiO3 superlattices grown along (001) and (111) orientations. Phys. Rev. B 92, 014426 (2015).
M.T. Anderson, K.B. Greenwood, G.A. Taylor, and K.R. Poeppelmeier: B-cation arrangements in double perovskites. Prog. Solid State Chern. 22, 197 (1993).
R. Ramesh and N.A. Spaldin: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
M.P. Singh, K.D. Truong, S. Jandl, and P. Fournier: Multiferroic double perovskite: opportunities, issues, and challenges. J. Appl. Phys. 107, 09D917 (2010).
Y. Shimakawa, M. Azuma, and N. Ichikawa: Multiferroic compounds with double-perovskite structures. Materials 4, 153 (2011).
D. Serrate, J.M. De Teresa, and M.R. Ibarra: Double perovskites with fer-romagnetism above room temperature. J. Phys: Condens. Matter 19, 023201 (2007).
H. Zhang, H. Huang, K. Haule, and D. Vanderbilt: Quantum anomalous Hall phase in (001) double-perovskite monolayers via intersite spin-orbit coupling. Phys. Rev. B 90, 165143 (2014).
O. Erten, O. Meetei, A. Mukherjee, M. Randeria, N. Trivedi, and P. Woodward: Theory of half-metallic ferrimagnetism in double perovskites. Phys. Rev. Lett. 107, 257201 (2011).
Y. Liu, H. Fuh, and Y. Wang: Ab Initio research on a new type of half-metallic double perovskite, A2Cr2MOe (A-IVA group elements; M= Mo, Re and W). Computation 2, 12 (2014).
N. Ichikawa, M. Arai, Y. Imai, K. Hagiwara, H. Sakama, M. Azuma, Y. Shimakawa, M. Takano, Y. Kotaka, M. Yonetani, H. Fujisawa, M. Shimizu, K. Ishikawa, and Y. Cho: Multiferrosim at room temperature in BiFeO3/BiCrO3 (111) artificial superlattices. Appl. Phys. Express 1, 101302 (2008).
K. Ueda, H. Tabata, and T. Kawai: Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280, 1064 (1998).
K. Ueda, H. Tabata, and T. Kawai: Atomic arrangement and magnetic properties of LaFeO3-LaMnO3 artificial superlattices. Phys. Rev. B 60, R12561 (1999).
J. Chang, K. Lee, M. Jun, J. Kwon, M. Kim, and S. Kim: Emergence of room-temperature magnetic ordering in artificially fabricated ordered-double-perovskite Sr2FeRuO6. Chern. Mater. 23, 2693 (2011).
J. Kanamori: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87 (1959).
W.E. Pickett: Ferromagnetic superlattices. Science 281, 1571a (1998).
B. Gray, H. Lee, J. Liu, J. Chakhalian, and J.W. Freeland: Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite. Appl. Phys. Lett 97, 013105 (2010).
S. Chakraveerty, A. Ohtomo, D. Okuyama, M. Saito, M. Okude, R. Kumai, T. Arima, Y. Tokura, S. Tsukimoto, Y. Ikuhara, and M. Kawasaki: Ferrimagnetism and spontaneous ordering of transition metals in double perovskite La2CrFeO6 films. Phys. Rev. B 84, 064436 (2011).
R. Nechache, L.-P. Carignan, L. Gunawan, C. Harnagea, G.A. Botton, and D. Menard: Epitaxial thin films of multiferroic Bi2FeCrO6 with B-site cat-ionic order. J. Mater. Res. 11, 2102 (2007).
B. Yang and N. Nagaosa: Emergent topological phenomena in thin films of pyrochlore iridates. Phys. Rev. Lett. 112, 246402 (2014).
T.C. Fujita, Y. Kozuka, M. Uchida, A. Tsukazaki, T. Arima, and M. Kawasaki: Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry. Sci. Rep. 5, 9711 (2015).
L. Bovo, X. Moya, D. Prabhakaran, Y. Soh, A.T. Boothroyd, N.D. Mathur, G. Aeppli, and S.T. Bramwell: Restoration of the third law in spin ice thin films. Nat. Commun. 5, 3439 (2014).
T.C. Fujita, M. Uchida, Y. Kozuka, W. Sano, A. Tsukazaki, T. Arima, and M. Kawasaki: All-in-all-out magnetic domain wall conduction in a pyro-chlore iridate heterointerface. Phys. Rev. B 93, 064419 (2016).
J. Chu, S.C. Riggs, M. Shapiro, J. Liu, C. Serero, D. Yi, M. Melissa, S. J. Suresha, C. Frontera, A. Vishwanath, X. Marti, I.R. Fisher, and R. Ramesh: Linear magnetoresistance and time reversal symmetry breaking of pyrochlore iridates Bi2lr2O7. arXiv:1309.4750.
J.F. Afonso and V. Pardo: Ab initio study of nontrivial topological phases in corundum-structured (M2O3)/(AI2O3)5 multilayers. Phys. Rev. B 92, 235102 (2015).
A. Ohtomo and H.Y. Hwang: A high-mobility electron gas at the LaAIO3/ SrTiO3 heterointerface. Nature 427, 423 (2004).
N. Nakagawa, H. Hwang, and D.A. Muller: Why some interfaces cannot be sharp. Nat. Mater. 5, 204 (2006).
G. Herranz, F. Sánchez, N. Dix, M. Scigaj, and J. Fontcuberta: High mobility conduction at (110) and (111) LaAIO3/SrTiO3 interfaces. Sci. Rep. 2, 758 (2012).
S. Takei, B.M. Fregoso, V. Galitski, and S.D. Sarma: Topological superconductivity and Majorana fermions in hybrid structures involving cup-rate high-Tc superconductors. Phys. Rev. B 87, 014504 (2013).
J. Chakhalian, J.W. Freeland, H.-U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer: Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114 (2007).
S. Catalano, M. Gibert, V. Bisogni, F. He, R. Sutarto, M. Viret, P. Zubko, R. Scherwitzl, G.A. Sawatzky, T. Schmitt, and J.-M. Triscone: Tailoring the electronic transitions of NdNiO3 films through (111)pc oriented interfaces. APL Mater. 3, 062506 (2015).
W. Ito, S. Mahajan, Y. Yoshida, T. Morishita, M. Kumagai, and K. Yabuta: Influence of crystal strain on superconductivity of a-axis oriented YBa2Cu3Ox films. Jpn. J. Appl. Phys. 33, 5701 (1994).
T.H. Kim, D. Puggioni, Y. Yuan, L. Xie, H. Zhou, N. Campbell, P.J. Ryan, Y. Choi, J.-W. Kim, J.R. Patzner, S. Ryu, J.P. Podkaminer, J. Irwin, Y. Ma, C.J. Fennie, M.S. Rzchowski, X.Q. Pan, V. Gopalan, J.M. Rondinelli, and C.B. Eom: Polar metals by geometric design. Nature 533, 68 (2016).
Acknowledgments
The authors would like to thank D. Khomskii and G. Fiete for enlightening discussions. J.C. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant No. GBMF4534. X.L. and S.M. were supported by the Department of Energy under Grant No. DE-SC0012375, and Y.C. and M.K. were supported by the DOD-ARO under Grant No. 0402–17291.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, X., Middey, S., Cao, Y. et al. Geometrical lattice engineering of complex oxide heterostructures: a designer approach to emergent quantum states. MRS Communications 6, 133–144 (2016). https://doi.org/10.1557/mrc.2016.24
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/mrc.2016.24