Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spintronics with graphene

  • Functionalities
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Because of its fascinating electronic properties, graphene is expected to produce breakthroughs in many areas of nanoelectronics. For spintronics, its key advantage is the expected long spin lifetime, combined with its large electron velocity. In this article, we review recent theoretical and experimental results showing that graphene could be the long-awaited platform for spintronics. A critical parameter for both characterization and devices is the resistance of the contact between the electrodes and the graphene, which must be large enough to prevent quenching of the induced spin polarization but small enough to allow for the detection of this polarization. Spin diffusion lengths in the 100- μ m range, much longer than those in conventional metals and semiconductors, have been observed. This could be a unique advantage for several concepts of spintronic devices, particularly for the implementation of complex architectures or logic circuits in which information is coded by pure spin currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Datta, B. Das, Appl. Phys. Lett. 56 (7), 665 (1990).

    Google Scholar 

  2. G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip, B. van Wees, Phys. Rev. B 62 (8), R4790 (2000).

  3. S.P. Dash, S. Sharma, R.S. Patel, M.P. de Jong, R. Jansen, Nature 462, 491 (2009).

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 82 (3), 2673 (2010).

  5. K.S. Novoselov, A.K. Geim, S.V. Morosov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorievam, A.A. Firsov, Science 306 (5696), 666 (2004).

  6. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312 (5777), 1191 (2006).

  7. W.A. de Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J.A. Stroscio, P.N. First, R. Haddon, B. Piot, C. Faugeras, M. Potemski, J.S. Moon, J. Phys. D: Appl. Phys. 43 (37), 374007 (2010).

  8. C. Jozsa, B.J. van Wees, in Handbook of Spin Transport and Magnetism, E.Y. Tsymbal, I. Zutic, Eds. (CRC Press, Boca Raton, FL, 2011), pp. 579 – 598.

  9. H. Dery, H. Wu, B. Ciftcioglu, M. Huang, Y. Song, R. Kawakami, J. Shi, I. Krivorotov, I. Zutic, L.J. Sham, IEEE Trans. Electron Devices 59, 259 (2011).

  10. 2011 International Technology Roadmap for Semiconductors (International SEMATECH: Austin, TX, 2011); www.itrs.net/Links/2011ITRS/Home2011.htm (accessed January 2012).

  11. B. Behin-Aein, D. Datta, S. Salahuddin, S. Datta, Nat. Nanotechnol. 5, 266 (2010).

  12. E.W. Hill, A.K. Geim, K. Novoselov, F. Schedin, P. Blake, IEEE Trans. Magn. 42 (10), 2694 (2006).

  13. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Nature 448 (7153), 571 (2007).

  14. S. Cho, Y.F. Chen, M. Fuhrer, Appl. Phys. Lett. 91 (12), 123105 (2007).

  15. M. Ohishi, M. Shiraishi, R. Nouchi, T. Nozaki, T. Shinjo, Y. Suzuki, Jpn. J. Appl. Phys. 46 (25), L605 (2007).

  16. H. Goto, A. Kanda, T. Sato, S. Tanaka, Y. Ootuka, S. Odaka, H. Miyazaki, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 92 (21), 212110 (2008).

  17. M. Popinciuc, C. Jozsa, P.J. Zomer, N. Tombros, A. Veligura, H.T. Jonkman, B.J. van Wees, Phys. Rev. 80 (21), 214427 (2009).

  18. F.J. Jedema, H.B. Heersche, A.T. Filip, J.J.A. Baselmans, B.J. van Wees, Nature 416, 713 (2002).

  19. W. Han, K.M. McCreary, K. Pi, W.H. Wang, Y. Li, H. Wen, J.R. Chen, R.K. Kawakami, J. Magn. Magn. Mater. 324 (4), 365 (2012).

  20. T.Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S.R. Ali, A. Pachoud, M. Zeng, M. Popenciuc, G. Guntherodt, B. Beschoten, B. Ozyilmaz, Phys. Rev. Lett. 107 (4), 047206 (2011).

  21. W. Han, K. Pi, K.M. McCreary, Y. Li, J.I. Wong, A. Swartz, R.K. Kawakami, Phys. Rev. Lett. 105 (16), 167202 (2010).

  22. W. Han, R.K. Kawakami, Phys. Rev. Lett. 107 (4), 047207 (2011).

  23. W. Han, J.R. Chen, D. Wang, K.M. McCreary, H. Wen, A.G. Swartz, J. Shi, R.K. Kawakami, Nanotechnology 23, 135203 (2012).

  24. A. Avsar, T.Y. Yang, S. Bae, J. Balakrishnan, F. Volmer, M. Jaiswal, Z. Yi, S.R. Ali, G. Guntherodt, B.H. Hong, B. Beschoten, B. Ozyilmaz, Nano Lett. 11 (6), 2363 (2011).

  25. M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, S. Vizzini, H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W.A. de Heer, A. Lanzara, E. Conrad, Phys. Rev. Lett. 103 (22), 226803 (2009).

  26. T. Maassen, J.J. van den Berg, N. Ijbema, F. Fromm, T. Seyller, R. Yakimova, B.J. van Wees, Nano Lett. 12 (3), 1498 (2012).

  27. B. Dlubak, M.B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W.A. de Heer, F. Petroff, A. Anane, P. Seneor, A. Fert, Nat. Phys. 8 (7), 557 (2012).

  28. B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot, D. Deneuve, B. Servet, R. Mattana, F. Petroff, A. Fert, Appl. Phys. Lett. 97 (9), 092502 (2010).

  29. C. Jozsa, T. Maassen, M. Popinciuc, P.J. Zomer, A. Veligura, H.T. Jonkman, B.J. van Wees, Phys. Rev. B 80 (24), 241403 (R) (2009).

  30. R.J. Elliott, Phys. Rev. 96 (12), 266 (1954).

  31. T. Maassen, F.K. Dejene, M.H.D. Guimaraes, C. Jozsa, B.J. van Wees, Phys. Rev. B 83 (11), 115410 (2011).

  32. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146 (9–10), 351 (2008).

  33. M.I. Dyakonov, V.I. Perel, Sov. Phys. JETP Lett. 13 (11), 467 (1971).

  34. H. Ochoa, A.H. Castro-Neto, F. Guinea, Phys. Rev. Lett. 108 (20), 206808 (2012).

  35. P. Zhang, M.W. Wu, New J. Phys. 14 (3), 033015 (2012).

  36. Y. Fukuma, L. Wang, H. Idzuchi, S. Takahashi, S. Maekawa, Y. Otani, Nat. Mater. 10 (7), 527 (2011).

  37. H. Jaffrès, J.M. George, A. Fert, Phys. Rev. B 82 (14), 140408 (R) (2010).

  38. P.C. van Son, H. van Kempen, P. Wyder, Phys. Rev. Lett. 58 (21), 2271 (1987).

  39. M. Johnson, R.H. Silsbee, Phys. Rev. Lett. 55 (17), 1790 (1985).

  40. T. Valet, A. Fert, Phys. Rev. B 48 (10), 7099 (1993).

  41. L.E. Hueso, J.M. Pruneda, V. Ferrari, G. Burnell, J.P. Valdés-Herrera, B.D. Simons, P.B. Littlewood, E. Artacho, A. Fert, N.D. Mathur, Nature 445 (7126), 410 (2007).

  42. S. Takahashi, S. Maekawa, Physica C 437438, 309 (2006).

  43. P. Laczkowski, L. Vila, V.-D. Nguyen, A. Marty, J.-P. Attane, H. Jaffres, J.-M. George, A. Fert, Phys. Rev. B 85, 220404 (R) (2012).

  44. X. Lou, Nat. Phys. 3, 197 (2007).

  45. T. Kimura, Y. Otani, Phys. Rev. Lett. 99, 196604 (2007).

  46. T. Suzuki, T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, K. Noguchi, Appl. Phys. Express 4, 023003 (2011).

  47. J.H. Ku, J. Chang, H. Kim, J. Eom, Appl. Phys. Lett. 88, 172510 (2006).

  48. I. Appelbaum, B. Huang, D.J. Monsma, Nature 447, 295 (2007).

  49. R. Jansen, Nat. Mater. 11, 400 (2012).

  50. T. Jayasekera, B.D. Kong, K.W. Kim, M.B. Nardelli, Phys. Rev. Lett. 104, 146801 (2010).

  51. S. Krompiewski, Nanotechnology 23 (13), 135203 (2012).

  52. A.H. Castro Neto, F. Guinea, Phys. Rev. Lett. 103 (2), 026804 (2009).

  53. A. Varykhalov, Sanchez-Barriga, A.M. Shikin, E. Vescovo, A. Rybkin, D. Marchenko, O. Rader, Phys. Rev. Lett. 101, 157601 (2008).

  54. B. Wunsch, T. Stauber, F. Sols, F. Guinea, Phys. Rev. Lett. 101, 036803 (2008).

  55. F. Munoz-Rojas, J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 102, 136810 (2009).

  56. H.X. Yang, M. Chshiev, D.W. Boulhavalov, X. Waintal, S. Roche, Phys. Rev. B 84, 214404 (2011).

  57. O.V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).

  58. D.A. Abanin, S.V. Morozov, L.A. Ponomarenko, R.V. Gorbachev, A.S. Mayorov, M.I. Katsnelson, K. Watanabe, T. Taniguchi, K.S. Novoselov, L.S. Levitov, A.K. Geim, Science 332 (6027), 328 (2011).

  59. I.J. Vera-Marun, V. Ranjan, B.J. van Wees, Phys. Rev. B 84 (24), 241408(R) (2011).

  60. P. San-Jose, E. Prada, E. McCann, H. Schomerus, Phys. Rev. Lett. 102, 247204 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Seneor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seneor, P., Dlubak, B., Martin, M.B. et al. Spintronics with graphene. MRS Bulletin 37, 1245–1254 (2012). https://doi.org/10.1557/mrs.2012.277

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.277