Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Half-Heusler topological insulators

  • Topological Insulators
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Ternary semiconducting or metallic half-Heusler compounds with an atomic composition 1:1:1 are widely studied for their flexible electronic properties and functionalities. Recently, a new material property of half-Heusler compounds was predicted based on electronic structure calculations: the topological insulator. In topological insulators, the metallic surface states are protected from impurity backscattering due to spin-momentum locking. This opens up new perspectives in engineering multifunctional materials. In this article, we introduce half-Heusler materials from the crystallographic and electronic structure point of view. We present an effective model Hamiltonian from which the topological state can be derived, notably from a non-trivial inverted band structure. We discuss general implications of the inverted band structure with a focus on the detection of the topological surface states in experiments by reviewing several exemplary materials. Special attention is given to superconducting half-Heusler materials, which have attracted ample attention as a platform for non-centrosymmetric and topological superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Google Scholar 

  2. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Google Scholar 

  3. J.E. Moore, Nature 464, 194 (2010).

    Google Scholar 

  4. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006).

    Google Scholar 

  5. M. Koenig, S. Wiedmann, C. Bruene, A. Roth, H. Buhmann, L. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007).

    Google Scholar 

  6. J.E. Moore, L. Balents, Phys. Rev. B: Condens. Matter 75, 121306 (2007).

    Google Scholar 

  7. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Google Scholar 

  8. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 452, 970 (2008).

    Google Scholar 

  9. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    Google Scholar 

  10. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nat. Phys. 5, 398 (2009).

    Google Scholar 

  11. A.A. Taskin, Z. Ren, S. Sasaki, K. Segawa, Y. Ando, Phys. Rev. Lett. 107, 016801 (2011).

    Google Scholar 

  12. Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).

    Google Scholar 

  13. F. Heusler, W. Starck, E. Haupt, Verh. DPG 5, 220 (1903).

    Google Scholar 

  14. T. Graf, C. Felser, S. Parkin, Prog. Solid State Chem. 39, 1 (2011).

    Google Scholar 

  15. S. Chadov, X.L. Qi, J. Kübler, G.H. Fecher, C. Felser, S.C. Zhang, Nat. Mater. 9, 541 (2010).

    Google Scholar 

  16. H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, M.Z. Hasan, Nat. Mater. 9, 546 (2010).

    Google Scholar 

  17. G. Goll, M. Marz, A. Hamann, T. Tomanic, K. Grube, T. Yoshino, T. Takabatake, Physica B 403, 1065 (2008).

    Google Scholar 

  18. N.P. Butch, P. Syers, K. Kirshenbaum, A.P. Hope, J. Paglione, Phys. Rev. B: Condens. Matter 84, 220504(R) (2011).

    Google Scholar 

  19. F. Tafti, T. Fujii, A. Juneau-Fecteau, S.R. de Cotret, N. Doiron-Leyraud, A. Asamitsu, L. Taillefer, Phys. Rev. B: Condens. Matter 87, 184504 (2013).

    Google Scholar 

  20. Y. Pan, A.M. Nikitin, T.V. Bay, Y.K. Huang, C. Paulsen, B.H. Yan, A. de Visser, Europhys. Lett. 104, 27001 (2013).

    Google Scholar 

  21. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

    Google Scholar 

  22. K. Kuriyama, K. Kushida, J. Appl. Phys. 87, 3168 (2000).

    Google Scholar 

  23. D.M. Rowe, Materials, Preparation, and Characterization in Thermoelectrics (CRC Press, Illustrations, USA, 2012), pp. 9–13.

  24. X. Dai, T.L. Hughes, X.-L. Qi, Z. Fang, S.-C. Zhang, Phys. Rev. B: Condens. Matter 77, 125319 (2008).

    Google Scholar 

  25. C. Bruene, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen X.L. Qi, Z.X. Shen, S.C. Zhang, L.W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011).

    Google Scholar 

  26. B. Yan, M. Jansen, C. Felser, Nat. Phys. 9, 709 (2013).

    Google Scholar 

  27. B. Yan, L. Müchler, C. Felser, Phys. Rev. Lett. 109, 116406 (2012).

    Google Scholar 

  28. L. Fu, C.L. Kane, Phys. Rev. B: Condens. Matter 76, 045302 (2007).

    Google Scholar 

  29. D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.Q. Chen, G.M. Stocks, Z. Zhang, Phys. Rev. Lett. 105, 096404 (2010).

    Google Scholar 

  30. W. Al-Sawai, H. Lin, R. Markiewicz, L. Wray, Y. Xia, S.Y. Xu, M. Hasan, A. Bansil, Phys. Rev. B: Condens. Matter 82, 125208 (2010).

    Google Scholar 

  31. W. Feng, D. Xiao, Y. Zhang, Y. Yao, Phys. Rev. B: Condens. Matter 82, 235121 (2010).

    Google Scholar 

  32. J. Vidal, X. Zhang, L. Yu, J.W. Luo, A. Zunger, Phys. Rev. B: Condens. Matter 84, 041109 (2011).

    Google Scholar 

  33. X.T. Wang, X.F. Dai, H.Y. Jia, L.Y. Wang, X.F. Liu, Y.T. Cui, G.D. Liu, Phys. Lett. A 378, 1662 (2014).

    Google Scholar 

  34. P. Pyykkö, Annu. Rev. Phys. Chem. 63, 45 (2013).

    Google Scholar 

  35. P. Roushan, J. Seo, C.V. Parker, Y.S. Hor, D. Hsieh, D. Qian, A. Richardella, M.Z. Hasan, R.J. Cava, A. Yazdani, Nature 460, 1106 (2009).

    Google Scholar 

  36. A.A. Abrikosov, Europhys. Lett. 49, 789 (2000).

    Google Scholar 

  37. C. Liu, Y. Lee, T. Kondo, E.D. Mun, M. Caudle, B.N. Harmon, S.L. Bud’ko, P.C. Canfield, A. Kaminski, Phys. Rev. B: Condens. Matter 83, 205133 (2011).

    Google Scholar 

  38. C. Shekhar, S. Ouardi, A.K. Nayak, G.H. Fecher, W. Schnelle, C. Felser, Phys. Rev. B: Condens. Matter 86, 155314 (2012).

    Google Scholar 

  39. C. Shekhar, M. Nicklas, A.K. Nayak, S. Ouardi, W. Schnelle, G.H. Fecher C. Felser, K. Kobayashi, J. Appl. Phys. 113, 17E142 (2013).

    Google Scholar 

  40. W. Wang, Y. Du, G. Xu, X. Zhang, E. Liu, Z. Liu, Y. Shi, J. Chen, G. Wu, X.-X. Zhang, Scientific Reports 3, 2181 (2013).

    Google Scholar 

  41. J. Wosnitza, G. Goll, A.D. Bianchi, B. Bergk, N. Kozlova, I. Opahle, S. Elgazzar, M. Richter, O. Stockert, H. v Löhneysen, T. Yoshino, T. Takabatake, New J. Phys. 8, 174 (2006).

    Google Scholar 

  42. B. Yan, S.-C. Zhang, Rep. Prog. Phys. 75, 096501 (2012).

    Google Scholar 

  43. R.-L. Chu, W.-Y. Shan, J. Lu, S.-Q. Shen, Phys. Rev. B: Condens. Matter 83, 075110 (2011).

    Google Scholar 

  44. S.-C. Wu, B. Yan, C. Felser, e-print arXiv:1404.6085 (2014).

  45. F. Virot, R. Hayn, M. Richter, J. van den Brink, Phys. Rev. Lett. 111, 146803 (2013).

    Google Scholar 

  46. S.H. Yao, B. Zhou, M.H. Lu, Z.K. Liu, Y.B. Chen, J.G. Analytis, C. Brüne, W.H. Dang, S.-K. Mo, Z.X. Shen, I.R. Fisher, L.W. Molenkamp, H.L. Peng, Z. Hussain, Y.L. Chen, Phys. Status Solidi RRL 7, 130 (2013).

    Google Scholar 

  47. M. Sato, Phys. Rev. B: Condens. Matter 79, 214526 (2009).

    Google Scholar 

  48. Y.S. Hor, A.J. Williams, J.G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H.W. Zandbergen, A. Yazdani, N.P. Ong, R.J. Cava, Phys. Rev. Lett. 104, 057001 (2010).

    Google Scholar 

  49. S. Sasaki, Z. Ren, A.A Taskin, K. Segawa, L. Fu, Y. Ando, Phys. Rev. Lett. 109, 217004 (2012).

    Google Scholar 

  50. T.V. Bay, M. Jackson, C. Paulsen, C. Baines, A. Amato, T. Orvis, M.C. Aronson, Y.K. Huang, A. de Visser, Solid State Commun. 183, 13 (2014).

    Google Scholar 

  51. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966).

    Google Scholar 

  52. T.V. Bay, T. Naka, Y.K. Huang, A. de Visser, Phys. Rev. B: Condens. Matter 86, 064515 (2012).

    Google Scholar 

  53. K. Scharnberg, R.A. Klemm, Phys. Rev. B: Condens. Matter 22, 5233 (1980).

    Google Scholar 

  54. E. Bauer, M. Sigrist, Eds., Non Centrosymmetric Superconductors (Lecture Notes in Physics), vol.847 (Springer, Berlin, 2012).

  55. J. Goraus, A. Ślebarski, M. Fijałkowski, J. Phys. Condens. Matter 25, 176002 (2013).

    Google Scholar 

  56. G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, X.X. Zhang, Scientific Reports 4, 5709 (2014).

    Google Scholar 

Download references

Acknowledgments

B.Y. acknowledges support from the Max-Planck Institute for the Physics of Complex Systems, helpful discussions with C. Felser, and financial support by an ERC Advanced Grant (291472). The work of A.dV. was carried out in the research program on Topological Insulators of FOM (Dutch Foundation for Fundamental Research of Matter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghai Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., de Visser, A. Half-Heusler topological insulators. MRS Bulletin 39, 859–866 (2014). https://doi.org/10.1557/mrs.2014.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.198