Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Creating Novel Transport Properties in Electric Double Layer Field Effect Transistors Based on Layered Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present a study on the liquid/solid interface, which can be electrostatically doped to a high carrier density (n~1014 cm−2) by electric-double-layer gating. Using micro-cleavage technique on the layered materials: ZrNCl and graphene, atomically flat channel surfaces can be easily prepared. Intrinsic high carrier density transport regime is accessed at the channel interface of electric double-layer field effect transistor, where novel transport properties are unveiled as the field-induced superconductivity on the ZrNCl with high transition temperature at 15 K, and accessing a high carrier density up to 2×1014 cm−2 in graphene and its multi-layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Simon, and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Google Scholar 

  2. A. S. Aricò et al., Nat. Mater. 4, 366 (2005).

    Google Scholar 

  3. H. G. O. Sandberg et al., Adv. Mater. 16, 1112 (2004).

    Google Scholar 

  4. H. Shimotani, G. Diguet, and Y. Iwasa, Appl. Phys. Lett. 86, 022104 (2005).

    Google Scholar 

  5. M. J. Panzer, C. R. Newman, and D. C. Frisbiea, Appl. Phys. Lett. 86, 103503 (2005).

    Google Scholar 

  6. J. Takeya et al., Appl. Phys. Lett. 88, 112102 (2006).

    Google Scholar 

  7. H. Shimotani, H. Asanuma, and Y. Iwasa, Jpn. J. Appl. Phys. 46, 3613 (2007).

    Google Scholar 

  8. A. S. Dhoot et al., Proc. Natl. Acad. Sci. U.S.A. 103, 11834 (2006).

    Google Scholar 

  9. R. Misra, M. McCarthy, and A. F. Hebard, Appl. Phys. Lett. 90, 052905 (2007).

    Google Scholar 

  10. H. Shimotani et al., Appl. Phys. Lett. 91, 082106 (2007).

    Google Scholar 

  11. A. S. Dhoot et al., Phys. Rev. Lett. 102, 136402 (2009).

    Google Scholar 

  12. K. Ueno et al., Nat. Mater. 7, 855 (2008).

    Google Scholar 

  13. C. H. Ahn et al., Rev. Mod. Phys. 78, 1185 (2006).

    Google Scholar 

  14. K. S. Novoselov et al., Science 306, 666 (2004).

    Google Scholar 

  15. M. F. Craciun et al., Nature Nanotech. 4, 383 (2009).

    Google Scholar 

  16. S. Baldelli, Acc. Chem. Res. 41, 421 (2008).

    Google Scholar 

  17. H. Tokuda et al., J. Phys. Chem. B 110, 19593 (2006).

    Google Scholar 

  18. M. Ohashi et al., Solid State Ionics 32, 97 (1989).

    Google Scholar 

  19. S. Shamoto et al., J. Phys. Chem. Solids 60, 1511 (1999).

    Google Scholar 

  20. T. Takano et al., Phys. Rev. B 77, 104518 (2008).

    Google Scholar 

  21. Y. Taguchi, A. Kitora, and Y. Iwasa, Phys. Rev. Lett. 97, 107001 (2006).

    Google Scholar 

  22. H. Miyazaki et al., Appl. Phys. Exp. 1, 034007 (2008).

    Google Scholar 

  23. A. D. Caviglia et al., Nature 456, 624 (2008).

    Google Scholar 

  24. J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 6313, 134421 (2001).

    Google Scholar 

  25. B. Uchoa, and A. H. C. Neto, Phys. Rev. Lett. 98, 146801 (2007).

    Google Scholar 

  26. N. B. Kopnin, and E. B. Sonin, Phys. Rev. Lett. 100, 246808 (2008).

    Google Scholar 

  27. J. T. Ye et al., Nat. Mater. 9, 125 (2010).

    Google Scholar 

  28. H. T. Yuan et al., Adv. Fun. Mater. 19, 1046 (2009).

    Google Scholar 

  29. B. Lee et al., Nano Lett. (2010).

    Google Scholar 

  30. M. D. Stoller et al., Nano Lett. 8, 3498 (2008).

    Google Scholar 

  31. Y. Ohno et al., Nano Lett. 9, 3318 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J.T., Craciun, M.F., Koshino, M. et al. Creating Novel Transport Properties in Electric Double Layer Field Effect Transistors Based on Layered Materials. MRS Online Proceedings Library 1288, 809 (2010). https://doi.org/10.1557/opl.2011.289

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.289