Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We present a study to show the possibility of using two well-known space partitioning and indexing techniques, kd trees and quad trees, in declustering applications to increase input/output (I/O) parallelization and reduce spatial data processing times. This parallelization enables time-consuming computational geometry algorithms to be applied efficiently to big spatial data rendering and querying. The key challenge is how to balance the spatial processing load across a large number of worker nodes, given significant performance heterogeneity in nodes and processing skews in the workload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9): 509–517. [doi:10.1145/361002.361007]

    Article  MATH  MathSciNet  Google Scholar 

  • Beynon, M., Chang, C., Catalyurek, U., et al., 2002. Processing large-scale multi-dimensional data in parallel and distributed environments. Parall. Comput., 28(5):827–859. [doi:10.1016/S0167-8191(02)00097-2]

    Article  Google Scholar 

  • Chakka, V.P., Everspaugh, A.C., Patel, J.M., 2003. Indexing large trajectory data sets with SETI. Proc. 1st Biennial Conf. on Innovative Data Systems Research.

    Google Scholar 

  • Chilès, J.P., Delfiner, P., 2009. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Chou, T.C.K., Abraham, J.A., 1982. Load balancing in distributed systems. IEEE Trans. Softw. Eng., SE-8(4):401–412. [doi:10.1109/TSE.1982.235574]

    Article  Google Scholar 

  • Cudre-Mauroux, P., Wu, E., Madden, S., 2010. TrajStore: an adaptive storage system for very large trajectory data sets. Proc. IEEE 26th Int. Conf. on Data Engineering, p.109–120. [doi:10.1109/ICDE.2010.5447829]

    Google Scholar 

  • DeWitt, D., Gray, J., 1992. Parallel database systems: the future of high performance database systems. Commun. ACM, 35(6):85–98. [doi:10.1145/129888.129894]

    Article  Google Scholar 

  • Furht, B., Escalante, A., 2011. Handbook of Data Intensive Computing. Springer, New York, USA.

    Book  Google Scholar 

  • Li, R., Bhanu, B., Ravishankar, C., et al., 2007. Uncertain spatial data handling: modeling, indexing and query. Comput. Geosci., 33(1):42–61. [doi:10.1016/j.cageo.2006.05.011]

    Article  Google Scholar 

  • Moon, B., Saltz, J.H., 1998. Scalability analysis of declustering methods for multidimensional range queries. IEEE Trans. Knowl. Data Eng., 10(2):310–327. [doi:10.1109/69.683759]

    Article  Google Scholar 

  • Ray, S., Simion, B., Brown, A.D., et al., 2013. A parallel spatial data analysis infrastructure for the cloud. Proc. 21st ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, p.284–293. [doi:10.1145/2525314.2525347]

    Google Scholar 

  • Reich, B.J., Chang, H.H., Strickland, M.J., 2014. Spatial health effects analysis with uncertain residential locations. Stat. Methods Med. Res., 23(2):156–168. [doi:10.1177/0962280212447151]

    Article  MathSciNet  Google Scholar 

  • Samet, H., 2006. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco, USA.

    MATH  Google Scholar 

  • Sayar, A., 2013. Fine-grained federation of geographic information services through metadata aggregation. Sci. Res. Essays, 8(46):2242–2256.

    Google Scholar 

  • Sayar, A., Marlon, P., Geoffrey, F.C., 2014. An adaptive range-query optimization technique with distributed replicas. J. Cent. South Univ., 21(1):190–198. [doi:10.1007/s11771-014-1930-7]

    Article  Google Scholar 

  • Sinha, R., Samaddar, S., Bhattacharyya, D., et al., 2010. A tutorial on spatial data handling. Int. J. Database Theory Appl., 3(1):1–12.

    Google Scholar 

  • Wang, L., Wu, P., Chen, H., 2013. Finding probabilistic prevalent colocations in spatially uncertain data sets. IEEE Trans. Knowl. Data Eng., 25(4):790–804. [doi:10.1109/TKDE.2011.256]

    Article  MathSciNet  Google Scholar 

  • Wei, W., 2010. Analysis of spatial database index technology. Proc. 2nd Int. Conf. on Computer Engineering and Technology, p.29–32. [doi:10.1109/ICCET.2010.5486363]

    Google Scholar 

  • Zhang, Y., Lin, X., Zhang, W., et al., 2010. Effectively indexing the uncertain space. IEEE Trans. Knowl. Data Eng., 22(9):1247–1261. [doi:10.1109/TKDE.2010.77]

    Article  Google Scholar 

  • Zhong, Y., Han, J., Zhang, T., et al., 2012. Towards parallel spatial query processing for big spatial data. Proc. IEEE 26th Int. Parallel and Distributed Processing Symp. Workshops & PhD Forum, p.2085–2094. [doi:10.1109/IPDPSW.2012.245]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Eken.

Additional information

ORCID: Ahmet SAYAR, http://orcid.org/0000-0002-6335-459X; Süleyman EKEN, http://orcid.org/0000-0001-9488-908X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayar, A., Eken, S. & Öztürk, O. Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space. Frontiers Inf Technol Electronic Eng 16, 98–108 (2015). https://doi.org/10.1631/FITEE.1400165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400165

Key words

CLC number