Abstract
IPv6 has been an inevitable trend with the depletion of the global IPv4 address space. However, new IPv6 users still need public IPv4 addresses to access global IPv4 users/resources, making it important for providers to share scarce global IPv4 addresses effectively. There are two categories of solutions to the problem, carrier-grade NAT (CGN) and ‘A+P’ (each customer sharing the same IPv4 address is assigned an excluded port range). However, both of them have limitations. Specifically, CGN solutions are not scalable and can bring much complexity in managing customers in large-scale deployments, while A+P solutions are not flexible enough to meet dynamic port requirements. In this paper, we propose a hybrid mechanism to improve current solutions and have deployed it in the Tsinghua University Campus Network. The real traffic data shows that our mechanism can utilize limited IPv4 addresses efficiently without degrading the performance of applications on end hosts. Based on the enhanced mechanism, we propose a method to help service providers make address plans based on their own traffic patterns and actual requirements.
Similar content being viewed by others
References
Alcock, S., 2008. Research into the Viability of Service-Provider NAT. Available from http://www.wand.net.nz/~salcock/someisp/flow_counting/result_page.html [Accessed on Jan. 8, 2015].
Alcock, S., Nelson, R., 2011. Measuring and characterising inbound sessions in residential DSL traffic. Proc. Australasian Telecommunication Networks and Applications Conf., p.1–6. [doi:10.1109/ATNAC.2011.6096628]
Alcock, S., Nelson, R., Miles, D., 2010. Investigating the impact of service provider NAT on residential broadband users. Proc. IEEE INFOCOM.
Audet, F., Jennings, C., 2007. Network Address Translation (NAT) Behavioral Requirements for Unicast UDP. RFC 4787. [doi:10.17487/RFC4787]
Bagnulo, M., 2009. Sharing of an IPv4 Address. Available from http://www.ietf.org/proceedings/74/shara.html [Accessed on Jan. 8, 2015].
Bajko, G., Boucadair, M., Bush, R., et al., 2009. Overview of Shared Address Solution Space. Available from http://www.ietf.org/proceedings/74/slides/shara-9.pdf [Accessed on Jan. 8, 2015].
Chen, M., Li, X., Li, A., et al., 2006. Forwarding IPv4 traffics in pure IPv6 backbone with stateless address mapping. Proc. 10th IEEE/IFIP Network Operations and Management Symp., p.260–270. [doi:10.1109/NOMS.2006.1687557]
Cui, Y., Sun, Q., Boucadair, M., et al., 2014. Lightweight 4over6: an Extension to the DS-Lite Architecture. Available from https://tools.ietf.org/html/draft-cuisoftwire-b4-translated-ds-lite-05 [Accessed on Jan. 8, 2015].
Després, R., 2009a. Port-Range Based IPv4 Address Space Extension—a Static Approach Based on SAM. Available from http://www.ietf.org/proceedings/74/slides/shara-7.pdf [Accessed on Jan. 8, 2015].
Després, R., 2009b. Scalable Multihoming across IPv6 Local-Address Routing Zones Global-Prefix/Local-Address Stateless Address Mapping (SAM). Available from https://tools.ietf.org/html/draft-despres-sam-03 [Accessed on Jan. 8, 2015].
Després, R., Jiang, S., Penno, R., et al., 2014. IPv4 Residual Deployment via IPv6—a Stateless Solution (4rd).
Durand, A., 2009. Dual-Stack Lite. Available from http://lacnic.net/documentos/lacnicxii/presentaciones/flip6/02_Alain_Durand.pdf [Accessed on Jan. 8, 2015].
Durand, A., Droms, R., Woodyatt, J., et al., 2011. Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion. RFC 6333.
Fiocco, A., 2012. Two Months after World IPv6 Launch, Measuring IPv6 Adoption: 6lab.cisco.com/stats. Available from http://blogs.cisco.com/news/two-monthsafter-world-ipv6-launch-measuring-ipv6-adoption-6labcisco-comstats [Accessed on Jan. 8, 2015].
Ford, M., Boucadair, M., Durand, A., et al., 2011. Issues with IP Address Sharing. RFC 6269. [doi:10.17487/RFC6269]
Guha, S., Biswas, K., Ford, B., et al., 2008. NAT Behavioral Requirements for TCP. RFC 5382. [doi:10.17487/RFC5382]
Hankins, D., Mrugalski, T., 2011. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite. RFC 6334. [doi:10.17487/RFC6334]
Herzberg, A., Shulman, H., 2013. Socket overloading for fun and cache-poisoning. Proc. 29th Annual Computer Security Applications Conf., p.189–198. [doi:10.1145/2523649.2523662]
Huston, G., 2009. NAT++: address sharing in IPv4. Int. Proto. J., 13(2):1–10.
Huston, G., 2014. IPv4 Address Report. Available from http://www.potaroo.net/tools/ipv4/index.html [Accessed on Jan. 8, 2015].
Kaminsky, D., 2008. Black Ops 2008. It’s the End of the Cache as We Know It. Black Hat USA.
Li, X., Bao, C., Chen, M., et al., 2011. The China Education and Research Network (CERNET) IVI Translation Design and Deployment for the IPv4/IPv6 Coexistence and Transition. RFC 6219. [doi:10.17487/RFC6219]
Li, X., Bao, C., Dec, W., et al., 2014. Mapping of Address and Port Using Translation (MAP-T). Available from https://tools.ietf.org/html/draft-ietfsoftwire-map-t-08 [Accessed on Jan. 8, 2015].
Mrugalski, T., Troan, O., Farrer, I., et al., 2015. DHCPv6 Options for Configuration of Softwire Address and Port Mapped Clients. Available from https://tools.ietf.org/html/draft-ietf-softwiremap-dhcp-12 [Accessed on Jan. 8, 2015].
Ramaiah, A., Tate, P., 2008. Effects of Port Randomization with TCP TIME-WAIT State.
Ripke, A., Winter, R., Brunner, M., et al., 2010. The impact of port-based address-sharing on residential broadband access networks. Proc. IEEE Global Telecommunications Conf., p.1–6. [doi:10.1109/GLOCOM.2010.5683449]
Schneider, F., Agarwal, S., Alpcan, T., et al., 2008. The new web: characterizing AJAX traffic. Proc. 9th Int. Conf. on Passive and Active Network Measurement, p.31–40. [doi:10.1007/978-3-540-79232-1_4]
Schneider, F., Feldmann, A., Krishnamurthy, B., et al., 2009. Understanding online social network usage from a network perspective. Proc. 9th ACM SIGCOMM Conf. on Internet Measurement, p.35–48. [doi:10.1145/1644893.1644899]
Škoberne, N., Maennel, O., Phillips, I., et al., 2014. IPv4 address sharing mechanism classification and tradeoff analysis. IEEE/ACM Trans. Netw., 22(2):391–404. [doi:10.1109/TNET.2013.2256147]
Srisuresh, P., Egevang, K., 2001. Traditional IP Network Address Translator (Traditional NAT). RFC 3022. [doi:10.17487/RFC3022]
Srisuresh, P., Ford, B., Sivakumar, S., et al., 2009. NAT Behavioral Requirements for ICMP. RFC 5508.
Troan, O., Dec, W., Li, X., et al., 2014. Mapping of Address and Port with Encapsulation (MAP). Available from http://tools.ietf.org/html/rfc7597 [Accessed on Jan. 8, 2015].
Wing, D., 2008. Dynamic TCP Port Reuse for Large Network Address and Port Translators. Available from http://tools.ietf.org/html/draft-wing-behave-dynamictcp-port-reuse-00 [Accessed on Jan. 8, 2015].
Author information
Authors and Affiliations
Corresponding author
Additional information
ORCID: Guo-liang HAN, http://orcid.org/0000-0002-8921-4202
Rights and permissions
About this article
Cite this article
Han, Gl., Bao, Cx. & Li, X. A scalable and efficient IPv4 address sharing approach in IPv6 transition scenarios. Frontiers Inf Technol Electronic Eng 16, 634–645 (2015). https://doi.org/10.1631/FITEE.1500022
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500022