Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A scalable and efficient IPv4 address sharing approach in IPv6 transition scenarios

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

IPv6 has been an inevitable trend with the depletion of the global IPv4 address space. However, new IPv6 users still need public IPv4 addresses to access global IPv4 users/resources, making it important for providers to share scarce global IPv4 addresses effectively. There are two categories of solutions to the problem, carrier-grade NAT (CGN) and ‘A+P’ (each customer sharing the same IPv4 address is assigned an excluded port range). However, both of them have limitations. Specifically, CGN solutions are not scalable and can bring much complexity in managing customers in large-scale deployments, while A+P solutions are not flexible enough to meet dynamic port requirements. In this paper, we propose a hybrid mechanism to improve current solutions and have deployed it in the Tsinghua University Campus Network. The real traffic data shows that our mechanism can utilize limited IPv4 addresses efficiently without degrading the performance of applications on end hosts. Based on the enhanced mechanism, we propose a method to help service providers make address plans based on their own traffic patterns and actual requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcock, S., 2008. Research into the Viability of Service-Provider NAT. Available from http://www.wand.net.nz/~salcock/someisp/flow_counting/result_page.html [Accessed on Jan. 8, 2015].

  • Alcock, S., Nelson, R., 2011. Measuring and characterising inbound sessions in residential DSL traffic. Proc. Australasian Telecommunication Networks and Applications Conf., p.1–6. [doi:10.1109/ATNAC.2011.6096628]

    Google Scholar 

  • Alcock, S., Nelson, R., Miles, D., 2010. Investigating the impact of service provider NAT on residential broadband users. Proc. IEEE INFOCOM.

    Google Scholar 

  • Audet, F., Jennings, C., 2007. Network Address Translation (NAT) Behavioral Requirements for Unicast UDP. RFC 4787. [doi:10.17487/RFC4787]

    Book  Google Scholar 

  • Bagnulo, M., 2009. Sharing of an IPv4 Address. Available from http://www.ietf.org/proceedings/74/shara.html [Accessed on Jan. 8, 2015].

  • Bajko, G., Boucadair, M., Bush, R., et al., 2009. Overview of Shared Address Solution Space. Available from http://www.ietf.org/proceedings/74/slides/shara-9.pdf [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Chen, M., Li, X., Li, A., et al., 2006. Forwarding IPv4 traffics in pure IPv6 backbone with stateless address mapping. Proc. 10th IEEE/IFIP Network Operations and Management Symp., p.260–270. [doi:10.1109/NOMS.2006.1687557]

    Google Scholar 

  • Cui, Y., Sun, Q., Boucadair, M., et al., 2014. Lightweight 4over6: an Extension to the DS-Lite Architecture. Available from https://tools.ietf.org/html/draft-cuisoftwire-b4-translated-ds-lite-05 [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Després, R., 2009a. Port-Range Based IPv4 Address Space Extension—a Static Approach Based on SAM. Available from http://www.ietf.org/proceedings/74/slides/shara-7.pdf [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Després, R., 2009b. Scalable Multihoming across IPv6 Local-Address Routing Zones Global-Prefix/Local-Address Stateless Address Mapping (SAM). Available from https://tools.ietf.org/html/draft-despres-sam-03 [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Després, R., Jiang, S., Penno, R., et al., 2014. IPv4 Residual Deployment via IPv6—a Stateless Solution (4rd).

    Google Scholar 

  • Durand, A., 2009. Dual-Stack Lite. Available from http://lacnic.net/documentos/lacnicxii/presentaciones/flip6/02_Alain_Durand.pdf [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Durand, A., Droms, R., Woodyatt, J., et al., 2011. Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion. RFC 6333.

    Book  Google Scholar 

  • Fiocco, A., 2012. Two Months after World IPv6 Launch, Measuring IPv6 Adoption: 6lab.cisco.com/stats. Available from http://blogs.cisco.com/news/two-monthsafter-world-ipv6-launch-measuring-ipv6-adoption-6labcisco-comstats [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Ford, M., Boucadair, M., Durand, A., et al., 2011. Issues with IP Address Sharing. RFC 6269. [doi:10.17487/RFC6269]

    Book  Google Scholar 

  • Guha, S., Biswas, K., Ford, B., et al., 2008. NAT Behavioral Requirements for TCP. RFC 5382. [doi:10.17487/RFC5382]

    Book  Google Scholar 

  • Hankins, D., Mrugalski, T., 2011. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite. RFC 6334. [doi:10.17487/RFC6334]

    Book  Google Scholar 

  • Herzberg, A., Shulman, H., 2013. Socket overloading for fun and cache-poisoning. Proc. 29th Annual Computer Security Applications Conf., p.189–198. [doi:10.1145/2523649.2523662]

    Google Scholar 

  • Huston, G., 2009. NAT++: address sharing in IPv4. Int. Proto. J., 13(2):1–10.

    Google Scholar 

  • Huston, G., 2014. IPv4 Address Report. Available from http://www.potaroo.net/tools/ipv4/index.html [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Kaminsky, D., 2008. Black Ops 2008. It’s the End of the Cache as We Know It. Black Hat USA.

    Google Scholar 

  • Li, X., Bao, C., Chen, M., et al., 2011. The China Education and Research Network (CERNET) IVI Translation Design and Deployment for the IPv4/IPv6 Coexistence and Transition. RFC 6219. [doi:10.17487/RFC6219]

    Book  Google Scholar 

  • Li, X., Bao, C., Dec, W., et al., 2014. Mapping of Address and Port Using Translation (MAP-T). Available from https://tools.ietf.org/html/draft-ietfsoftwire-map-t-08 [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Mrugalski, T., Troan, O., Farrer, I., et al., 2015. DHCPv6 Options for Configuration of Softwire Address and Port Mapped Clients. Available from https://tools.ietf.org/html/draft-ietf-softwiremap-dhcp-12 [Accessed on Jan. 8, 2015].

    Book  Google Scholar 

  • Ramaiah, A., Tate, P., 2008. Effects of Port Randomization with TCP TIME-WAIT State.

    Google Scholar 

  • Ripke, A., Winter, R., Brunner, M., et al., 2010. The impact of port-based address-sharing on residential broadband access networks. Proc. IEEE Global Telecommunications Conf., p.1–6. [doi:10.1109/GLOCOM.2010.5683449]

    Google Scholar 

  • Schneider, F., Agarwal, S., Alpcan, T., et al., 2008. The new web: characterizing AJAX traffic. Proc. 9th Int. Conf. on Passive and Active Network Measurement, p.31–40. [doi:10.1007/978-3-540-79232-1_4]

    Chapter  Google Scholar 

  • Schneider, F., Feldmann, A., Krishnamurthy, B., et al., 2009. Understanding online social network usage from a network perspective. Proc. 9th ACM SIGCOMM Conf. on Internet Measurement, p.35–48. [doi:10.1145/1644893.1644899]

    Google Scholar 

  • Škoberne, N., Maennel, O., Phillips, I., et al., 2014. IPv4 address sharing mechanism classification and tradeoff analysis. IEEE/ACM Trans. Netw., 22(2):391–404. [doi:10.1109/TNET.2013.2256147]

    Article  Google Scholar 

  • Srisuresh, P., Egevang, K., 2001. Traditional IP Network Address Translator (Traditional NAT). RFC 3022. [doi:10.17487/RFC3022]

    Book  Google Scholar 

  • Srisuresh, P., Ford, B., Sivakumar, S., et al., 2009. NAT Behavioral Requirements for ICMP. RFC 5508.

    Book  Google Scholar 

  • Troan, O., Dec, W., Li, X., et al., 2014. Mapping of Address and Port with Encapsulation (MAP). Available from http://tools.ietf.org/html/rfc7597 [Accessed on Jan. 8, 2015].

    Google Scholar 

  • Wing, D., 2008. Dynamic TCP Port Reuse for Large Network Address and Port Translators. Available from http://tools.ietf.org/html/draft-wing-behave-dynamictcp-port-reuse-00 [Accessed on Jan. 8, 2015].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-liang Han.

Additional information

ORCID: Guo-liang HAN, http://orcid.org/0000-0002-8921-4202

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Gl., Bao, Cx. & Li, X. A scalable and efficient IPv4 address sharing approach in IPv6 transition scenarios. Frontiers Inf Technol Electronic Eng 16, 634–645 (2015). https://doi.org/10.1631/FITEE.1500022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500022

Keywords

Document code

CLC number