Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Image quality assessment method based on nonlinear feature extraction in kernel space

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdi, H., Williams, L.J., 2010. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat., 2(4): 433–459. http://dx.doi.org/10.1002/wics.101

    Article  Google Scholar 

  • Bach, F.R., Jordan, M.I., 2003. Kernel independent component analysis. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.IV-876-9. http://dx.doi.org/10.1109/ICASSP.2003.1202783

  • Chang, C.C., Lin, C.J., 2011. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3):Article 27. http://dx.doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  • Chang, H.W., Zhang, Q.W., Wu, Q.G., et al., 2015. Perceptual image quality assessment by independent feature detector. Neurocomputing, 151:1142–1152. http://dx.doi.org/10.1016/j.neucom.2014.04.081

    Article  Google Scholar 

  • Ding, Y., Dai, H., 2014. Image quality assessment scheme with topographic independent components analysis for sparse feature extraction. Electron. Lett., 50(7): 509–510. http://dx.doi.org/10.1049/el.2013.4298

    Article  Google Scholar 

  • Genton, M.G., 2001. Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res., 2:299–312.

    MathSciNet  MATH  Google Scholar 

  • Hyvärinen, A., Hurri, J., Hoyer, P.O., 2009. Natural Image Statistics: a Probabilistic Approach to Early Computational Vision. Springer-Verlag London, UK.

    Book  Google Scholar 

  • Jolliffe, I., 2002. Principal Component Analysis. Springer-Verlag New York, USA.

    MATH  Google Scholar 

  • Larson, E.C., Chandler, D.M., 2010. Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imag., 19(1):011006. http://dx.doi.org/10.1117/1.3267105

    Article  Google Scholar 

  • Li, Q., Wang, Z., 2009. Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE J. Sel. Topics Signal Process., 3(2): 202–211. http://dx.doi.org/10.1109/JSTSP.2009.2014497

    Article  Google Scholar 

  • Li, Y.C., Wu, K.H., Ma, Y.L., et al., 2007. Image digital watermarking technique based on kernel independent component analysis. Proc. 11th Int. Conf. on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, p.467–474. http://dx.doi.org/10.1007/978-3-540-72530-5_56

    Chapter  Google Scholar 

  • Liu, A., Lin, W., Narwaria, M., 2012. Image quality assessment based on gradient similarity. IEEE Trans. Image Process., 21(4): 1500–1512. http://dx.doi.org/10.1109/TIP.2011.2175935

    Article  MathSciNet  Google Scholar 

  • Liu, M., Yang, X., 2009. Image quality assessment using contourlet transform. Opt. Eng., 48(10):107201. http://dx.doi.org/10.1117/1.3241996

    Article  Google Scholar 

  • Liu, T.J., Lin, W., Kuo, C.C.J., 2013. Image quality assessment using multi-method fusion. IEEE Trans. Image Process., 22(5): 1793–1807. http://dx.doi.org/10.1109/TIP.2012.2236343

    Article  MathSciNet  Google Scholar 

  • Ma, L., Li, S., Ngan, K.N., 2013. Reduced-reference image quality assessment in reorganized DCT domain. Signal Process. Image Commun., 28(8): 884–902. http://dx.doi.org/10.1016/j.image.2012.08.001

    Article  Google Scholar 

  • Mittal, A., Moorthy, A.K., Bovik, A.C., 2012. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process., 21(12): 4695–4708. http://dx.doi.org/10.1109/TIP.2012.2214050

    Article  MathSciNet  Google Scholar 

  • Rao, D.V., Reddy, L.P., 2009. Contrast weighted perceptual structural similarity index for image quality assessment. Proc. Annual IEEE India Conf., p.1–4. http://dx.doi.org/10.1109/INDCON.2009.5409432

    Google Scholar 

  • Rehman, A., Wang, Z., 2012. Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans. Image Process., 21(8): 3378–3389. http://dx.doi.org/10.1109/TIP.2012.2197011

    Article  MathSciNet  Google Scholar 

  • Schölkopf, B., Smola, A.J., 1998. Learning with Kernels. MIT Press.

    MATH  Google Scholar 

  • Sheikh, H.R., Bovik, A.C., de Veciana, G., 2005. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process., 14(12): 2117–2128. http://dx.doi.org/10.1109/TIP.2005.859389

    Article  Google Scholar 

  • Video Quality Experts Group, 2003. Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II(fr_tv2). Available from http://www.vqeg.org.

    Google Scholar 

  • Wang, Z., Li, Q., 2011. Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process., 20(5): 1185–1198. http://dx.doi.org/10.1109/TIP.2010.2092435

    Article  MathSciNet  Google Scholar 

  • Wang, Z., Bovik, A.C., Lu, L.G., 2002. Why is image quality assessment so difficult? Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.1–4. http://dx.doi.org/10.1109/ICASSP.2002.5745362

  • Wang, Z., Simoncelli, E.P., Bovik, A.C., 2003. Multiscale structural similarity for image quality assessment. Proc. 37th Asilomar Conf. on Signals, Systems and Computers, p.1398–1402. http://dx.doi.org/10.1109/ACSSC.2003.1292216

    Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., et al., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4): 600–612. http://dx.doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  • Wu, Q., Li, H., Meng, F., et al., 2015. No reference image quality assessment metric via multi-domain structural information and piecewise regression. J. Vis. Commun. Image Represent., 32:205–216. http://dx.doi.org/10.1016/j.jvcir.2015.08.009

    Article  Google Scholar 

  • Wu, Q., Li, H., Meng, F., et al., 2016. Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Trans. Circ. Syst. Video Technol., 26(3): 425–440. http://dx.doi.org/10.1109/TCSVT.2015.2412773

    Article  Google Scholar 

  • Yang, C.A., Kaveh, M., 2010. Image quality assessment using singular vectors. Proc. SPIE, Article 752910. http://dx.doi.org/10.1117/12.839796

    Google Scholar 

  • Yang, J., Gao, X., Zhang, D., et al., 2005. Kernel ICA: an alternative formulation and its application to face recognition. Patt. Recog., 38(10): 1784–1787. http://dx.doi.org/10.1016/j.patcog.2005.01.023

    Article  Google Scholar 

  • Zhang, H., Ding, Y., Huang, K., et al., 2014. Image quality assessment by quantifying discrepancies of multifractal spectrums. IEICE Trans. Inform. Syst., 97(9): 2453–2460. http://dx.doi.org/10.1587/transinf.2014EDP7036

    Article  Google Scholar 

  • Zhang, L., Zhang, L., Mou, X., et al., 2011. FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process., 20(8): 2378–2386. http://dx.doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

  • Zhang, M., Muramatsu, C., Zhou, X., et al., 2015. Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process. Lett., 22(2): 207–210. http://dx.doi.org/10.1109/LSP.2014.2326399

    Article  Google Scholar 

  • Zhang, Y., Chandler, D.M., 2013. No-reference image quality assessment based on log-derivative statistics of natural scenes. J. Electron. Imag., 22(4):043025. http://dx.doi.org/10.1117/1.JEI.22.4.043025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA016704c), the National Science & Technology Support Program of China (No. 2013BAH03B01), and the Zhejiang Provincial Natural Science Foundation of China (No. LY14F020028)

ORCID: Yong DING, http://orcid.org/0000-0002-5226-7511

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Li, N., Zhao, Y. et al. Image quality assessment method based on nonlinear feature extraction in kernel space. Frontiers Inf Technol Electronic Eng 17, 1008–1017 (2016). https://doi.org/10.1631/FITEE.1500439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500439

Keywords

CLC number