Abstract
Electroencephalogram (EEG) based brain-computer interfaces allow users to communicate with the external environment by means of their EEG signals, without relying on the brain’s usual output pathways such as muscles. A popular application for EEGs is the EEG-based speller, which translates EEG signals into intentions to spell particular words, thus benefiting those suffering from severe disabilities, such as amyotrophic lateral sclerosis. Although the EEG-based English speller (EEGES) has been widely studied in recent years, few studies have focused on the EEG-based Chinese speller (EEGCS). The EEGCS is more difficult to develop than the EEGES, because the English alphabet contains only 26 letters. By contrast, Chinese contains more than 11 000 logographic characters. The goal of this paper is to survey the literature on EEGCS systems. First, the taxonomy of current EEGCS systems is discussed to get the gist of the paper. Then, a common framework unifying the current EEGCS and EEGES systems is proposed, in which the concept of EEG-based choice acts as a core component. In addition, a variety of current EEGCS systems are investigated and discussed to highlight the advances, current problems, and future directions for EEGCS.
Similar content being viewed by others
References
Akram F, Han HS, Kim TS, 2014. A P300-based brain computer interface system for words typing. Comput Biol Med, 45:118–125. https://doi.org/10.1016/j.compbiomed.2013.12.001
Allison BZ, Pineda JA, 2003. ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neur Syst Rehabil Eng, 11(2): 110–113. https://doi.org/10.1109/TNSRE.2003.814448
Allison BZ, Dunne S, Leeb R, et al., 2013. Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-29746-5
Amiri S, Fazel-Rezai R, Asadpour V, 2013a. A review of hybrid brain-computer interface systems. Adv Hum-Comput Interact, 2013:187024. https://doi.org/10.1155/2013/187024
Amiri S, Rabbi A, Azinfar L, et al., 2013b. A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems. In: Fazel-Rezai R (Ed.), Brain-Computer Interface Systems—Recent Progress and Future Prospects. InTechOpen, London, UK, p.195–213. https://doi.org/10.5772/50696
Bai LJ, Yu TY, Li YQ, 2015. A brain computer interface-based explorer. J Neurosci Methods, 244:2–7. https://doi.org/10.1016/j.jneumeth.2014.06.015
Birbaumer N, Ghanayim N, Hinterberger T, et al., 1999. A spelling device for the paralysed. Nature, 398(6725): 297–298. https://doi.org/10.1038/18581
Blankertz B, Dornhege G, Krauledat M, et al., 2006. The Berlin brain-computer interface presents the novel mental typewriter Hex-o-Spell. 3rd Int Brain-Computer Interface Workshop and Training Course, p.108–109.
Blankertz B, Tomioka R, Lemm S, et al., 2008. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag, 25(1):41–56. https://doi.org/10.1109/MSP.2008.4408441
Blankertz B, Tangermann M, Vidaurre C, et al., 2010. The Berlin brain-computer interface: non-medical uses of BCI technology. Front Neurosci, 4:198. https://doi.org/10.3389/fnins.2010.00198
Blankertz B, Lemm S, Treder M, et al., 2011. Single-trial analysis and classification of ERP components—a tutorial. Neuroimage, 56(2):814–825. https://doi.org/10.1016/j.neuroimage.2010.06.048
Brouwer AM, van Erp JB, 2010. A tactile P300 braincomputer interface. Front Neurosci, 4:19. https://doi.org/10.3389/fnins.2010.00019
Brunner P, Joshi S, Briskin S, et al., 2010. Does the ‘P300’ speller depend on eye gaze? J Neur Eng, 7(5):056013. https://doi.org/10.1088/1741-2560/7/5/056013
Chen CH, Yang J, Huang YB, et al., 2013. A cursor control based Chinese-English BCI speller. 20th Int Conf on Neural Information Processing, p.403–410. https://doi.org/10.1007/978-3-642-42054-2_50
Colwell KA, Ryan DB, Throckmorton CS, et al., 2014. Channel selection methods for the P300 speller. J Neurosci Methods, 232:6–15. https://doi.org/10.1016/j.jneumeth.2014.04.009
Coyle S, Ward T, Markham C, 2003. Brain-computer interfaces: a review. Interdiscip Sci Rev, 28(2):112–118. https://doi.org/10.1179/030801803225005102
D’albis T, Blatt R, Tedesco R, et al., 2012. A predictive speller controlled by a brain-computer interface based on motor imagery. ACM Trans Comput-Hum Interact, 19(3):20. https://doi.org/10.1145/2362364.2362368
Delorme A, Makeig S, 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Farwell LA, Donchin E, 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol, 70(6):510–523. https://doi.org/10.1016/0013-4694(88)90149-6
Ford JM, White P, Lim KO, et al., 1994. Schizophrenics have fewer and smaller P300s: a single-trial analysis. Biol Psychiatry, 35(2):96–103. https://doi.org/10.1016/0006-3223(94)91198-3
Halder S, Pinegger A, Käthner I, et al., 2015. Brain-controlled applications using dynamic P300 speller matrices. Artif Intell Med, 63(1):7–17. https://doi.org/10.1016/j.artmed.2014.12.001
Hinterberger T, Schmidt S, Neumann N, et al., 2004. Braincomputer communication and slow cortical potentials. IEEE Trans Biomed Eng, 51(6):1011–1018. https://doi.org/10.1109/TBME.2004.827067
Hoffmann U, Vesin JM, Ebrahimi T, et al., 2008. An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods, 167(1):115–125. https://doi.org/10.1016/j.jneumeth.2007.03.005
Höhne J, Schreuder M, Blankertz B, et al., 2010. Twodimensional auditory P300 speller with predictive text system. Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, p.4185–4188. https://doi.org/10.1109/IEMBS.2010.5627379
Höhne J, Schreuder M, Blankertz B, et al., 2011. A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front Neurosci, 5:99. https://doi.org/10.3389/fnins.2011.00099
Hong B, Guo F, Liu T, et al., 2009. N200-speller using motiononset visual response. Clin Neurophysiol, 120(9):1658–1666. https://doi.org/10.1016/j.clinph.2009.06.026
Huang TW, Tai YH, Tian YJ, et al., 2013. The fastest BCI for writing Chinese characters using brain waves. 4th Global Congress on Intelligent Systems, p.346–349. https://doi.org/10.1109/GCIS.2013.62
Jin J, Allison BZ, Brunner C, et al., 2010. P300 Chinese input system based on Bayesian LDA. Biomed Eng/Biomed Tech, 55(1):5–18. https://doi.org/10.1515/bmt.2010.003
Jin J, Allison BZ, Kaufmann T, et al., 2012a. The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLOS ONE, 7(11):e49688. https://doi.org/10.1371/journal.pone.0049688
Jin J, Allison BZ, Wang XY, et al., 2012b. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. J Neurosci Methods, 205(2):265–276. https://doi.org/10.1016/j.jneumeth.2012.01.004
Jin J, Allison BZ, Zhang Y, et al., 2014a. An ERP-based BCI using an oddball paradigm with different faces and reduced errors in critical functions. Int J Neur Syst, 24(8): 1450027. https://doi.org/10.1142/S0129065714500270
Jin J, Daly I, Zhang Y, et al., 2014b. An optimized ERP brain-computer interface based on facial expression changes. J Neur Eng, 11(3):036004. https://doi.org/10.1088/1741-2560/11/3/036004
Jin J, Sellers EW, Zhou SJ, et al., 2015. A P300 braincomputer interface based on a modification of the mismatch negativity paradigm. Int J Neur Syst, 25(3): 1550011. https://doi.org/10.1142/S0129065715500112
Kaufmann T, Schulz SM, Grünzinger C, et al., 2011. Flashing characters with famous faces improves ERP-based braincomputer interface performance. J Neur Eng, 8(5): 056016. https://doi.org/10.1088/1741-2560/8/5/056016
Kaufmann T, Holz EM, Kübler A, 2013. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci, 7:129. https://doi.org/10.3389/fnins.2013.00129
Khan YU, Sepulveda F, 2012. EEG single-trial classification of different motor imagery tasks using measures of dispersion and power in frequency bands. Int J Biomed Eng Technol, 8(4):343–356. https://doi.org/10.1504/IJBET.2012.046960
Kindermans PJ, Verstraeten D, Buteneers P, et al., 2011. How do you like your P300 speller: adaptive, accurate and simple? 5th Int Conf on Brain-Computer Interface, p.1–4.
Kindermans PJ, Verschore H, Schrauwen B, 2013. A unified probabilistic approach to improve spelling in an eventrelated potential-based brain-computer interface. IEEE Trans Biomed Eng, 60(10):2696–2705. https://doi.org/10.1109/TBME.2013.2262524
Kindermans PJ, Tangermann M, Muller KR, et al., 2014. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller. J Neur Eng, 11(3):35005. https://doi.org/10.1088/1741-2560/11/3/035005
Li YQ, Guan CT, Li HQ, et al., 2008. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Patt Recogn Lett, 29(9):1285–1294. https://doi.org/10.1016/j.patrec.2008.01.030
Liu Q, Chen K, Ai QS, et al., 2014. Review: recent development of signal processing algorithms for SSVEP-based brain computer interfaces. J Med Biol Eng, 34(4):299–309. https://doi.org/10.5405/jmbe.1522
Minett JW, Peng G, Zhou L, et al., 2010. An assistive communication brain-computer interface for Chinese text input. 4th IEEE Int Conf on Bioinformatics and Biomedical Engineering, p.1–4. https://doi.org/10.1109/ICBBE.2010.5515559
Minett JW, Zheng HY, Fong MCM, et al., 2012. A Chinese text input brain-computer interface based on the P300 speller. Int J Hum-Comput Interact, 28(7):472–483. https://doi.org/10.1080/10447318.2011.622970
Mora-Cortes A, Manyakov NV, Chumerin N, et al., 2014. Language model applications to spelling with braincomputer interfaces. Sensors, 14(4):5967–5993. https://doi.org/10.3390/s140405967
Nicolas-Alonso LF, Gomez-Gil J, 2012. Brain computer interfaces: a review. Sensors, 12(2):1211–1279. https://doi.org/10.3390/s120201211
Nijholt A, 2008. BCI for games: a ‘state of the art’ survey. 7th Int Conf on Entertainment Computing, p.225–228. https://doi.org/10.1007/978-3-540-89222-9_29
Parini S, Maggi L, Turconi AC, et al., 2009. A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transferrate direct brain communication. Comput Intell Neurosci, 2009:864564. https://doi.org/10.1155/2009/864564
Ramoser H, Muller-Gerking J, Pfurtscheller G, 2000. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng, 8(4):441–446. https://doi.org/10.1109/86.895946
Ryan DB, Frye GE, Townsend G, et al., 2010. Predictive spelling with a P300-based brain-computer interface: increasing the rate of communication. Int J Hum-Comput Interact, 27(1):69–84. https://doi.org/10.1080/10447318.2011.535754
Schreuder M, Rost T, Tangermann M, 2011. Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI. Front Neurosci, 5:112. https://doi.org/10.3389/fnins.2011.00112
Schreuder M, Höhne J, Blankertz B, et al., 2013. Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods. J Neur Eng, 10(3):036025. https://doi.org/10.1088/1741-2560/10/3/036025
Sellers EW, Krusienski DJ, McFarland DJ, et al., 2006. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol, 73(3):242–252. https://doi.org/10.1016/j.biopsycho.2006.04.007
Semlitsch HV, Anderer P, Schuster P, et al., 1986. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23(6):695–703. https://doi.org/10.1111/j.1469-8986.1986.tb00696.x
Shende PM, Jabade VS, 2015. Literature review of brain computer interface (BCI) using electroencephalogram signal. Int Conf on Pervasive Computing, p.1–5. https://doi.org/10.1109/PERVASIVE.2015.7087109
Speier W, Arnold C, Lu J, et al., 2012. Natural language processing with dynamic classification improves P300 speller accuracy and bit rate. J Neur Eng, 9(1):016004. https://doi.org/10.1088/1741-2560/9/1/016004
Sun KT, Huang TW, Chen MC, 2011. Design of Chinese spelling system based on ERP. IEEE 11th Int Conf on Bioinformatics and Bioengineering, p.310–313. https://doi.org/10.1109/BIBE.2011.57
Tangermann M, Schreuder M, Dähne S, et al., 2011. Optimized stimulation events for a visual ERP BCI. Int J Bioelectromagn, 13(3):119–120.
Townsend G, LaPallo BK, Boulay CB, et al., 2010. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol, 121(7):1109–1120. https://doi.org/10.1016/j.clinph.2010.01.030
Verschore H, Kindermans PJ, Verstraeten D, et al., 2012. Dynamic stopping improves the speed and accuracy of a P300 speller. 22nd Int Conf on Artificial Neural Networks and Machine Learning, p.661–668. https://doi.org/10.1007/978-3-642-33269-2_83
Vidal JJ, 1973. Toward direct brain-computer communication. Ann Rev Biophys Bioeng, 2:157–180. https://doi.org/10.1146/annurev.bb.02.060173.001105
Wu B, Su Y, Zhang JH, et al., 2009. A virtual Chinese keyboard BCI system based on P300 potentials. Acta Electron Sin, 37(8):1733–1738, 1745 (in Chinese). https://doi.org/10.3321/j.issn:0372-2112.2009.08.019
Xia B, Yang H, Zhang QM, et al., 2012. Control 2-dimensional movement using a three-class motor imagery based brain-computer interface. Annual Int Conf of the IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/EMBC.2012.6346305
Xu MP, Qi HZ, Wan BK, et al., 2013. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature. J Neur Eng, 10(2):026001. https://doi.org/10.1088/1741-2560/10/2/026001
Xu X, Fang HJ, 2015. A P300-based BCI system for online Chinese input. J Huaqiao Univ (Nat Sci), 36(3):269–274 (in Chinese). https://doi.org/10.11830/ISSN.1000-5013.2015.03.0269
Yin EW, Zhou ZT, Jiang J, et al., 2013. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm. J Neur Eng, 10(2):026012. https://doi.org/10.1088/1741-2560/10/2/026012
Yin EW, Zhou ZT, Jiang J, et al., 2014. A speedy hybrid BCI spelling approach combining P300 and SSVEP. IEEE Trans Biomed Eng, 61(2):473–483. https://doi.org/10.1109/TBME.2013.2281976
Yin EW, Zhou ZT, Jiang J, et al., 2015. A dynamically optimized SSVEP brain-computer interface (BCI) speller. IEEE Trans Biomed Eng, 62(6):1447–1456. https://doi.org/10.1109/TBME.2014.2320948
Zhang JX, Fang Z, Du YC, et al., 2012. Centro-parietal N200: an event-related potential component specific to Chinese visual word recognition. Chin Sci Bull, 57(13):1516–1532. https://doi.org/10.1007/s11434-011-4932-y
Zhang Y, Zhao QB, Jin J, et al., 2012. A novel BCI based on ERP components sensitive to configural processing of human faces. J Neur Eng, 9(2):026018. https://doi.org/10.1088/1741-2560/9/2/026018
Zhao G, 2015. The contemporary Chinese dictionary. Int J Lexicography, 28(1):107–123. https://doi.org/10.1093/ijl/ecu030
Zhao JB, 2012. Steady-State Visual Evoked Potential: the Attentional Mechanism and the Application in Brain Computer Interface. PhD Thesis, Zhejiang University, Hangzhou, China (in Chinese).
Zhu DH, Bieger J, Molina GG, et al., 2010. A survey of stimulation methods used in SSVEP-based BCIs. Comput Intell Neurosci, 2010:702357. https://doi.org/10.1155/2010/702357
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the China Scholarship Council, the National Natural Science Foundation of China (Nos. 61673328, 61673322, 61402386, 61305061, 61203336, and 61273338), the Fundamental Research Funds for the Central Universities, China (No. 207201601 26), and the National Basic Research Program (973) of China (No. 2013CB329502)
Rights and permissions
About this article
Cite this article
Shi, Mh., Zhou, Cl., Xie, J. et al. Electroencephalogram-based brain-computer interface for the Chinese spelling system: a survey. Frontiers Inf Technol Electronic Eng 19, 423–436 (2018). https://doi.org/10.1631/FITEE.1601509
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1601509