Abstract
We investigate a multifunctional n-step honeycomb network which has not been studied before. By adjusting the circuit parameters, such a network can be transformed into several different networks with a variety of functions, such as a regular ladder network and a triangular network. We derive two new formulae for equivalent resistance in the resistor network and equivalent impedance in the LC network, which are in the fractional-order domain. First, we simplify the complex network into a simple equivalent model. Second, using Kirchhoff’s laws, we establish a fractional difference equation. Third, we construct an equivalent transformation method to obtain a general solution for the nonlinear differential equation. In practical applications, several interesting special results are obtained. In particular, an n-step impedance LC network is discussed and many new characteristics of complex impedance have been found.
Similar content being viewed by others
References
Asad, J.H., 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network. J. Stat. Phys., 150(6): 1177–1182. https://doi.org/10.1007/s10955-013-0716-x
Asad, J.H., 2013b. Infinite simple 3D cubic network of identical capacitors. Mod. Phys. Lett. B, 27(15): 151350112. https://doi.org/10.1142/S0217984913501121
Asad, J.H., Diab, A.A., Hijjawi, R.S., et al., 2013. Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function. Eur. Phys. J. Plus, 128(2): 1–5. https://doi.org/10.1140/epjp/i2013-13002-8
Biswas, K., Sen, S., Dutta, P., 2006. Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circ. Syst. II, 53(9): 802–806. https://doi.org/10.1109/TCSII.2006.879102
Chen, P., He, S.B., 2013. Analysis of the fractional-order parallel tank circuit. J. Circ. Syst. Comput., 22(6): 1350047. https://doi.org/10.1142/S0218126613500473
Cserti, J., 2000. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors. Am. J. Phys., 68(10): 896–906. https://doi.org/10.1119/1.1285881
Elshurafa, A.M., Almadhoun, M.N., Salama, K.N., et al., 2013. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett., 102(23): 232901. https://doi.org/10.1063/1.4809817
Essam, J.W., Tan, Z.Z., Wu, F.Y., 2014. Resistance between two nodes in general position on an m×n fan network. Phys. Rev. E, 90(3): 032130. https://doi.org/10.1103/PhysRevE.90.032130
Essam, J.W., Nsh, I., Kenna, R., et al., 2015. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network. R. Soc. Open Sci., 2(4): 140420. https://doi.org/10.1098/rsos.140420
Gabelli, J., Fève, G., Berroir, J.M., et al., 2006. Violation of Kirchhoff’s laws for a coherent RC circuit. Science, 313(5786): 499–502. https://doi.org/10.1126/science.1126940
Izmailian, N.S., Huang, M.C., 2010. Asymptotic expansion for the resistance between two maximum separated nodes on an M×N resistor network. Phys. Rev. E, 82(1 Pt 1):011125. https://doi.org/10.1103/PhysRevE.82.011125
Izmailian, N.S., Kenna, R., 2014. A generalised formulation of the Laplacian approach to resistor networks. J. Stat. Mech. Theor. Exp., 9(9): P09016. https://doi.org/10.1088/1742-5468/2014/09/P09016
Izmailian, N.S., Kenna, R., Wu, F.Y., 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network. J. Phys. A, 47(3): 035003. https://doi.org/10.1088/1751-8113/47/3/035003
Jia, H.Y., Chen, Z.Q., Qi, G.Y., 2013. Topological horseshoe analysis and circuit realization for a fractional-order Lu system. Nonl. Dynam., 74(1–2): 203–212. https://doi.org/10.1007/s11071-013-0958-9
Klein, D.J., Randi, M., 1993. Resistance distance. J. Math. Chem., 12(1): 81–95. https://doi.org/10.1007/BF01164627
Machado, J.A.T., Galhano, A.M.S.F., 2012. Fractional order inductive phenomena based on the skin effect. Nonl. Dynam., 68(1): 107–115. https://doi.org/10.1007/s11071-011-0207-z
Radwan, A.G., Salama, K.N., 2011. Passive and active elements using fractional L β C α circuit. IEEE Trans. Circ. Syst. I, 58(10): 2388–2397. https://doi.org/10.1109/TCSI.2011.2142690
Radwan, A.G., Salama, K.N., 2012. Fractional-order RC and RL circuit. Circ. Syst. Signal Process., 31(6): 1901–1915. https://doi.org/10.1007/s00034-012-9432-z
Tan, Z.Z., 2011. Resistor Network Model. Xidian University Press, Xi’an, China, p.28–88 (in Chinese).
Tan, Z.Z., 2012. A universal formula of the n-th power of 2×2 matrix and its applications. J. Nantong Univ., 11(1): 87–94. https://doi.org/10.3969/j.issn.1673-2340.2012.01.018
Tan, Z.Z., 2015a. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary. Chin. Phys. B, 24(2): 020503. https://doi.org/10.1088/1674-1056/24/2/020503
Tan, Z.Z., 2015b. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries. Phys. Rev. E, 91(5): 052122. https://doi.org/10.1103/PhysRevE.91.052122
Tan, Z.Z., 2015c. Recursion-transform method to a nonregular m×n cobweb with an arbitrary longitude. Sci. Rep., 5: 11266. https://doi.org/10.1038/srep11266
Tan, Z.Z., 2015d. Theory on resistance of m×n cobweb network and its application. Int. J. Circ. Theor. Appl., 43(11): 1687–1702. https://doi.org/10.1002/cta.2035
Tan, Z.Z., 2016. Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network. Chin. Phys. B, 25(5): 050504. https://doi.org/10.1088/1674-1056/25/5/050504
Tan, Z.Z., Fang, J.H., 2015. Two-point resistance of a cobweb network with a 2r boundary. Theor. Phys., 63(1): 36–44. https://doi.org/10.1103/PhysRevE.90.012130
Tan, Z.Z., Zhang, Q.H., 2015. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular network. Int. J. Circ. Theor. Appl., 43(7): 944–958. https://doi.org/10.1002/cta.1988
Tan, Z.Z., Zhou, L., Yang, J.H., 2013. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n cobweb network. J. Phys. A, 46(19): 195202. https://doi.org/10.1088/1751-8113/46/19/195202
Tan, Z.Z., Essam, J.W., Wu, F.Y., 2014. Two-point resistance of a resistor network embedded on a globe. Phys. Rev. E, 90(1): 012130. https://doi.org/10.1103/PhysRevE.90.012130
Tan, Z.Z., Zhou, L., Luo, D.F., 2015. Resistance and capacitance of 4×n cobweb network and two conjectures. Int. J. Circ. Theor. Appl., 43(3): 329–341. https://doi.org/10.1002/cta.1943
Tzeng, W.J., Wu, F.Y., 2006. Theory of impedance networks: the two-point impedance and LC resonances. J. Phys. A, 39(27): 8579. https://doi.org/10.1088/0305-4470/39/27/002
Wang, F.Q., Ma, X.K., 2013. Modeling and analysis of the fractional order buck converter in DCM operation by using fractional calculus and the circuit-averaging technique. J. Power Electron., 13(6): 1008–1015. https://doi.org/10.6113/JPE.2013.13.6.1008
Whan, C.B., Lobb, C.J., 1996. Complex dynamical behavior in RCL shunted Josephson tunnel junctions. Phys. Rev. E, 5(2): 405–413. https://doi.org/10.1103/PhysRevE.53.405
Wu, F.Y., 2004. Theory of resistor networks: the two-point resistance. J. Phys. A, 37(26): 6653–6673. https://doi.org/10.1088/0305-4470/37/26/004
Xiao, W.J., Gutman, I., 2003. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 110(4): 284–289. https://doi.org/10.1007/s00214-003-0460-4
Zhou, P., Huang, K., 2014. A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonl. Sci. Numer. Simul., 19(6): 2005–2011. https://doi.org/10.1016/j.cnsns.2013.10.024
Zhuang, J., Yu, G.R., Nakayama, K., 2014. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants. Sci. Rep., 4(4): 6720. https://doi.org/10.1038/srep06720
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Jiangsu Provincial Science Foundation (No. BK20161278)
Rights and permissions
About this article
Cite this article
Zhou, L., Tan, Zz. & Zhang, Qh. A fractional-order multifunctional n-step honeycomb RLC circuit network. Frontiers Inf Technol Electronic Eng 18, 1186–1196 (2017). https://doi.org/10.1631/FITEE.1601560
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1601560