Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A fractional-order multifunctional n-step honeycomb RLC circuit network

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We investigate a multifunctional n-step honeycomb network which has not been studied before. By adjusting the circuit parameters, such a network can be transformed into several different networks with a variety of functions, such as a regular ladder network and a triangular network. We derive two new formulae for equivalent resistance in the resistor network and equivalent impedance in the LC network, which are in the fractional-order domain. First, we simplify the complex network into a simple equivalent model. Second, using Kirchhoff’s laws, we establish a fractional difference equation. Third, we construct an equivalent transformation method to obtain a general solution for the nonlinear differential equation. In practical applications, several interesting special results are obtained. In particular, an n-step impedance LC network is discussed and many new characteristics of complex impedance have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asad, J.H., 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network. J. Stat. Phys., 150(6): 1177–1182. https://doi.org/10.1007/s10955-013-0716-x

    Article  MathSciNet  Google Scholar 

  • Asad, J.H., 2013b. Infinite simple 3D cubic network of identical capacitors. Mod. Phys. Lett. B, 27(15): 151350112. https://doi.org/10.1142/S0217984913501121

    Article  Google Scholar 

  • Asad, J.H., Diab, A.A., Hijjawi, R.S., et al., 2013. Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function. Eur. Phys. J. Plus, 128(2): 1–5. https://doi.org/10.1140/epjp/i2013-13002-8

    Google Scholar 

  • Biswas, K., Sen, S., Dutta, P., 2006. Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circ. Syst. II, 53(9): 802–806. https://doi.org/10.1109/TCSII.2006.879102

    Article  Google Scholar 

  • Chen, P., He, S.B., 2013. Analysis of the fractional-order parallel tank circuit. J. Circ. Syst. Comput., 22(6): 1350047. https://doi.org/10.1142/S0218126613500473

    Article  MathSciNet  Google Scholar 

  • Cserti, J., 2000. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors. Am. J. Phys., 68(10): 896–906. https://doi.org/10.1119/1.1285881

    Article  Google Scholar 

  • Elshurafa, A.M., Almadhoun, M.N., Salama, K.N., et al., 2013. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett., 102(23): 232901. https://doi.org/10.1063/1.4809817

    Article  Google Scholar 

  • Essam, J.W., Tan, Z.Z., Wu, F.Y., 2014. Resistance between two nodes in general position on an m×n fan network. Phys. Rev. E, 90(3): 032130. https://doi.org/10.1103/PhysRevE.90.032130

    Article  Google Scholar 

  • Essam, J.W., Nsh, I., Kenna, R., et al., 2015. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network. R. Soc. Open Sci., 2(4): 140420. https://doi.org/10.1098/rsos.140420

    Article  MathSciNet  Google Scholar 

  • Gabelli, J., Fève, G., Berroir, J.M., et al., 2006. Violation of Kirchhoff’s laws for a coherent RC circuit. Science, 313(5786): 499–502. https://doi.org/10.1126/science.1126940

    Article  Google Scholar 

  • Izmailian, N.S., Huang, M.C., 2010. Asymptotic expansion for the resistance between two maximum separated nodes on an M×N resistor network. Phys. Rev. E, 82(1 Pt 1):011125. https://doi.org/10.1103/PhysRevE.82.011125

    Article  Google Scholar 

  • Izmailian, N.S., Kenna, R., 2014. A generalised formulation of the Laplacian approach to resistor networks. J. Stat. Mech. Theor. Exp., 9(9): P09016. https://doi.org/10.1088/1742-5468/2014/09/P09016

    Article  Google Scholar 

  • Izmailian, N.S., Kenna, R., Wu, F.Y., 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network. J. Phys. A, 47(3): 035003. https://doi.org/10.1088/1751-8113/47/3/035003

    Article  Google Scholar 

  • Jia, H.Y., Chen, Z.Q., Qi, G.Y., 2013. Topological horseshoe analysis and circuit realization for a fractional-order Lu system. Nonl. Dynam., 74(1–2): 203–212. https://doi.org/10.1007/s11071-013-0958-9

    Article  MathSciNet  Google Scholar 

  • Klein, D.J., Randi, M., 1993. Resistance distance. J. Math. Chem., 12(1): 81–95. https://doi.org/10.1007/BF01164627

    Article  MathSciNet  Google Scholar 

  • Machado, J.A.T., Galhano, A.M.S.F., 2012. Fractional order inductive phenomena based on the skin effect. Nonl. Dynam., 68(1): 107–115. https://doi.org/10.1007/s11071-011-0207-z

    Article  MathSciNet  Google Scholar 

  • Radwan, A.G., Salama, K.N., 2011. Passive and active elements using fractional L β C α circuit. IEEE Trans. Circ. Syst. I, 58(10): 2388–2397. https://doi.org/10.1109/TCSI.2011.2142690

    MathSciNet  Google Scholar 

  • Radwan, A.G., Salama, K.N., 2012. Fractional-order RC and RL circuit. Circ. Syst. Signal Process., 31(6): 1901–1915. https://doi.org/10.1007/s00034-012-9432-z

    Article  MathSciNet  Google Scholar 

  • Tan, Z.Z., 2011. Resistor Network Model. Xidian University Press, Xi’an, China, p.28–88 (in Chinese).

    Google Scholar 

  • Tan, Z.Z., 2012. A universal formula of the n-th power of 2×2 matrix and its applications. J. Nantong Univ., 11(1): 87–94. https://doi.org/10.3969/j.issn.1673-2340.2012.01.018

    Google Scholar 

  • Tan, Z.Z., 2015a. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary. Chin. Phys. B, 24(2): 020503. https://doi.org/10.1088/1674-1056/24/2/020503

    Article  Google Scholar 

  • Tan, Z.Z., 2015b. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries. Phys. Rev. E, 91(5): 052122. https://doi.org/10.1103/PhysRevE.91.052122

    Article  MathSciNet  Google Scholar 

  • Tan, Z.Z., 2015c. Recursion-transform method to a nonregular m×n cobweb with an arbitrary longitude. Sci. Rep., 5: 11266. https://doi.org/10.1038/srep11266

    Article  Google Scholar 

  • Tan, Z.Z., 2015d. Theory on resistance of m×n cobweb network and its application. Int. J. Circ. Theor. Appl., 43(11): 1687–1702. https://doi.org/10.1002/cta.2035

    Article  Google Scholar 

  • Tan, Z.Z., 2016. Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network. Chin. Phys. B, 25(5): 050504. https://doi.org/10.1088/1674-1056/25/5/050504

    Article  Google Scholar 

  • Tan, Z.Z., Fang, J.H., 2015. Two-point resistance of a cobweb network with a 2r boundary. Theor. Phys., 63(1): 36–44. https://doi.org/10.1103/PhysRevE.90.012130

    MathSciNet  MATH  Google Scholar 

  • Tan, Z.Z., Zhang, Q.H., 2015. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular network. Int. J. Circ. Theor. Appl., 43(7): 944–958. https://doi.org/10.1002/cta.1988

    Article  Google Scholar 

  • Tan, Z.Z., Zhou, L., Yang, J.H., 2013. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n cobweb network. J. Phys. A, 46(19): 195202. https://doi.org/10.1088/1751-8113/46/19/195202

    Article  MathSciNet  Google Scholar 

  • Tan, Z.Z., Essam, J.W., Wu, F.Y., 2014. Two-point resistance of a resistor network embedded on a globe. Phys. Rev. E, 90(1): 012130. https://doi.org/10.1103/PhysRevE.90.012130

    Article  Google Scholar 

  • Tan, Z.Z., Zhou, L., Luo, D.F., 2015. Resistance and capacitance of 4×n cobweb network and two conjectures. Int. J. Circ. Theor. Appl., 43(3): 329–341. https://doi.org/10.1002/cta.1943

    Article  Google Scholar 

  • Tzeng, W.J., Wu, F.Y., 2006. Theory of impedance networks: the two-point impedance and LC resonances. J. Phys. A, 39(27): 8579. https://doi.org/10.1088/0305-4470/39/27/002

    Article  MathSciNet  Google Scholar 

  • Wang, F.Q., Ma, X.K., 2013. Modeling and analysis of the fractional order buck converter in DCM operation by using fractional calculus and the circuit-averaging technique. J. Power Electron., 13(6): 1008–1015. https://doi.org/10.6113/JPE.2013.13.6.1008

    Article  MathSciNet  Google Scholar 

  • Whan, C.B., Lobb, C.J., 1996. Complex dynamical behavior in RCL shunted Josephson tunnel junctions. Phys. Rev. E, 5(2): 405–413. https://doi.org/10.1103/PhysRevE.53.405

    Article  Google Scholar 

  • Wu, F.Y., 2004. Theory of resistor networks: the two-point resistance. J. Phys. A, 37(26): 6653–6673. https://doi.org/10.1088/0305-4470/37/26/004

    Article  MathSciNet  Google Scholar 

  • Xiao, W.J., Gutman, I., 2003. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 110(4): 284–289. https://doi.org/10.1007/s00214-003-0460-4

    Article  Google Scholar 

  • Zhou, P., Huang, K., 2014. A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonl. Sci. Numer. Simul., 19(6): 2005–2011. https://doi.org/10.1016/j.cnsns.2013.10.024

    Article  Google Scholar 

  • Zhuang, J., Yu, G.R., Nakayama, K., 2014. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants. Sci. Rep., 4(4): 6720. https://doi.org/10.1038/srep06720

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Tan.

Additional information

Project supported by the Jiangsu Provincial Science Foundation (No. BK20161278)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Tan, Zz. & Zhang, Qh. A fractional-order multifunctional n-step honeycomb RLC circuit network. Frontiers Inf Technol Electronic Eng 18, 1186–1196 (2017). https://doi.org/10.1631/FITEE.1601560

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601560

Key words

CLC number