Abstract
Low-angle estimation for very high frequency (VHF) radar is a difficult problem due to the multipath effect in the radar field, especially in complex scenarios where the reflection condition is unknown. To deal with this problem, we propose an algorithm of target height and multipath attenuation joint estimation. The amplitude of the surface reflection coefficient is estimated by the characteristic of the data itself, and it is assumed that there is no reflected signal when the amplitude is very small. The phase of the surface reflection coefficient and the phase difference between the direct and reflected signals are searched as the same part, and this represents the multipath phase attenuation. The Cramer-Rao bound of the proposed algorithm is also derived. Finally, computer simulations and real data processing results show that the proposed algorithm has good estimation performance under complex scenarios and works well with only one snapshot.
摘要
由于多径效应的影响, 甚高频雷达低角估计是雷达领域难题之一, 尤其是在反射条件未知的复杂情况下, 低角估计更难解决。针对这一问题, 提出一种目标高度和多径衰减联合估计算法。该算法首先利用数据本身的特性估算反射系数幅度, 当该幅度估计值很小时, 认为没有反射信号, 然后将反射系数的相位和直达信号与反射信号之间的相位差当作同一部分, 即多径相位衰减, 并对其进行搜索。推导了该算法的克拉美罗界。最后, 计算机仿真和实测数据处理结果表明, 该算法在复杂场景下具有良好估计性能, 并且在仅有单次快拍的条件下仍能较好地工作。
Similar content being viewed by others
References
Ahn S, Yang E, Chun J, et al., 2010. Low angle tracking using iterative multipath cancellation in sea surface environment. Proc IEEE Radar Conf, p.1156–1160. https://doi.org/10.1109/RADAR.2010.5494445
Ayasli S, 1986. SEKE: a computer model for low altitude radar propagation over irregular terrain. IEEE Trans Antenn Propag, 34(8): 1013–1023. https://doi.org/10.1109/TAP.1986.1143933
Barton DK, 1974. Low-angle radar tracking. Proc IEEE, 62(6):687–704. https://doi.org/10.1109/PROC.1974.9509
Beckmann P, Spizzichino A, 1987. The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House, Norwood, USA.
Bosse E, Turner RM, Lecours M, 1991. Tracking Swerling fluctuating targets at low altitude over the sea. IEEE Trans Aerosp Electron Syst, 27(5):806–822. https://doi.org/10.1109/7.97326
Griesser T, Balanis C, 2003. Oceanic low-angle monopulse radar tracking errors. IEEE J Ocean Eng, 12(1):289–295. https://doi.org/10.1109/JOE.1987.1145238
Heylen R, Zare A, Gader P, et al., 2016. Hyperspectral unmixing with endmember variability via alternating angle minimization. IEEE Trans Geosci Remote Sens, 54(8):4983–4993. https://doi.org/10.1109/TGRS.2016.2554160
Lo T, Litva J, 1991. Use of a highly deterministic multipath signal model in low-angle tracking. IEE Proc F (Radar Signal Process), 138(2):163–171. https://doi.org/10.1049/ip-f-2.1991.0022
Mahafza BR, 2013. Radar Systems Analysis and Design Using Matlab (3rd Ed.). CRC Press, Boca Raton, USA.
Park D, Yang E, Ahn S, et al., 2014. Adaptive beamforming for low-angle target tracking under multipath interference. IEEE Trans Aerosp Electron Syst, 50(4):2564–2577. https://doi.org/10.1109/TAES.2014.130185
Pillai SU, Kwon BH, 1989. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans Acoust Speech Signal Process, 37(1):8–15. https://doi.org/10.1109/29.17496
Roy R, Kailath T, 1989. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process, 37(7):984–995. https://doi.org/10.1109/29.32276
Schmidt RO, 1986. Multiple emitter location and signal parameter estimation. IEEE Trans Antenn Propag, 34(3):276–280. https://doi.org/10.1109/TAP.1986.1143830
Shan TJ, Wax M, Kailath T, 1985. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans Acoust Speech Signal Process, 33(4):806–811. https://doi.org/10.1109/tassp.1985.1164649
Skolnik MI, 2008. Radar Handbook (3rd Ed.). McGraw-Hill, New York, USA.
Takahashi R, Hirata K, Maniwa H, 2010. Altitude estimation of low elevation target over the sea for surface based phased array radar. Proc IEEE Radar Conf, p.123–128. https://doi.org/10.1109/RADAR.2010.5494639
Teti JG, 2000. Wide-band airborne radar operating considerations for low-altitude surveillance in the presence of specular multipath. IEEE Trans Antenn Propag, 48(2):176–191. https://doi.org/10.1109/8.833067
Wang SH, Cao YH, Su HT, 2014. Joint estimation of the target height and the reflecting surface height in low angle radar. Proc 12th Int Conf on Signal Processing, p.1868–1871. https://doi.org/10.1109/ICOSP.2014.7015316
Wang SH, Cao YH, Su HT, et al., 2016. Target and reflecting surface height joint estimation in low-angle radar. IET Radar Sonar Navig, 10(3):617–623. https://doi.org/10.1049/iet-rsn.2015.0391
Xu ZH, Rao B, Xiong ZY, et al., 2013. Elevation finding algorithm in beam domain under multi-path environments for VHF radar. IET Radar Sonar Navig, 7(9):978–984. https://doi.org/10.1049/iet-rsn.2012.0221
Xu ZH, Huang T, Xiong ZY, et al., 2014. Low angle tracking algorithm using frequency diversity for array radar. J Nat Univ Def Technol, 36(2):93–98 (in Chinese). https://doi.org/10.11887/j.cn.201402016
Zhu YT, Zhao YB, Shui PL, 2017. Low-angle target tracking using frequency-agile refined maximum likelihood algorithm. IET Radar Sonar Navig, 11(3):491–497. https://doi.org/10.1049/iet-rsn.2016.0301
Ziskind I, Wax M, 1988. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans Acoust Speech Signal Process, 36(10):1553–1560. https://doi.org/10.1109/29.7543
Author information
Authors and Affiliations
Contributions
Sheng CHEN designed the research. Sheng CHEN and Yongbo ZHAO processed the data. Sheng CHEN drafted the paper. Yili HU, Chenghu CAO, and Xiaojiao PANG helped organize the paper. Sheng CHEN and Yongbo ZHAO revised and finalized the paper.
Corresponding author
Additional information
Compliance with ethics guidelines
Sheng CHEN, Yongbo ZHAO, Yili HU, Chenghu CAO, and Xiaojiao PANG declare that they have no conflict of interest.
Project supported by the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (No. B18039)
Rights and permissions
About this article
Cite this article
Chen, S., Zhao, Y., Hu, Y. et al. Target height and multipath attenuation joint estimation with complex scenarios for very high frequency radar. Front Inform Technol Electron Eng 23, 937–949 (2022). https://doi.org/10.1631/FITEE.2100003
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2100003
Key words
- Low-angle estimation
- Very high frequency (VHF) radar
- Complex scenarios
- Multipath effect
- Height estimation