摘要
三元空间大数据一般定义为由其定义领域 (包括数据、 对象、 任务、 应用场景、 主体等) 所有元素组成的集合. 可视分析是一种新兴的人在回路大数据分析范式, 可利用人类感知提高人类认知效率. 本文探讨三元空间大数据跨域可视化分析, 强调三元空间大数据跨域性带来的新挑战——数据、 主题和任务域, 并提出一个新的可视分析模型和一套方法来应对这些挑战.
References
Aledhari M, Razzak R, Parizi RM, et al., 2020. Federated learning: a survey on enabling technologies, protocols, and applications. IEEE Access, 8:140699–140725. https://doi.org/10.1109/ACCESS.2020.3013541
Cao MQ, Liang J, Li MZ, et al., 2020. TDIVis: visual analysis of tourism destination images. Front Inform Technol Electron Eng, 21(4):536–557. https://doi.org/10.1631/FITEE.1900631
Chegin M, Bernard J, Cui J, et al., 2020. Interactive visual labelling versus active learning: an experimental comparison. Front Inform Technol Electron Eng, 21(4):524–535. https://doi.org/10.1631/FITEE.1900549
Deng DZ, Wu J, Wang JC, et al., 2021. EventAnchor: reducing human interactions in event annotation of racket sports videos. Proc CHI Conf on Human Factors in Computing Systems, Article 73. https://doi.org/10.1145/3411764.3445431
Giovannangeli L, Bourqui R, Giot R, et al., 2020. Toward automatic comparison of visualization techniques: application to graph visualization. Vis Inform, 4(2):86–98. https://doi.org/10.1016/j.visinf.2020.04.002
He WB, Wang JP, Guo HQ, et al., 2020. CECAV-DNN: collective ensemble comparison and visualization using deep neural networks. Vis Inform, 4(2):109–121. https://doi.org/10.1016/j.visinf.2020.04.004
Liu DY, Weng D, Li YH, et al., 2017. SmartAdP: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Trans Vis Comput Graph, 23(1): 1–10. https://doi.org/10.1109/TVCG.2016.2598432
Ma KL, Shen HW, 2020. Foreword to the Special Issue on PacificVis 2020 Workshop on Visualization Meets AI. Vis Inform, 4(2):71. https://doi.org/10.1016/j.visinf.2020.04.007
Ma RX, Mei HH, Guan HH, et al., 2021. LADV: deep learning assisted authoring of dashboard visualizations from images and sketches. IEEE Trans Vis Comput Graph, 27(9):3717–3732. https://doi.org/10.1109/TVCG.2020.2980227
Manyika J, Chui M, Brown B, et al., 2011. Big Data: the Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute.
Meng LH, Wei YT, Pan RS, et al., 2021. VADAF:visualization for abnormal client detection and analysis in federated learning. ACM Trans Interact Intell Syst, 11(3–4):26. https://doi.org/10.1145/3426866
Munzner T, 2014. Visualization Analysis and Design. CRC Press, New York, USA. https://doi.org/10.1201/b17511
Pan JC, Han DM, Guo FZ, et al., 2020. RCAnalyzer: visual analytics of rare categories in dynamic networks. Front Inform Technol Electron Eng, 21(4):491–506. https://doi.org/10.1631/FITEE.1900310
Schirner G, Erdogmus D, Chowdhury K, et al., 2013. The future of human-in-the-loop cyber-physical systems. Computer, 46(1):36–45. https://doi.org/10.1109/MC.2013.31
Tang T, Rubab S, Lai JW, et al., 2019. iStoryline: effective convergence to hand-drawn storylines. IEEE Trans Vis Comput Graph, 25(1):769–778. https://doi.org/10.1109/TVCG.2018.2864899
Tang T, Li RZ, Wu XK, et al., 2021. PlotThread: creating expressive storyline visualizations using reinforcement learning. IEEE Trans Vis Comput Graph, 27(2):294–303. https://doi.org/10.1109/TVCG.2020.3030467
Umbleja K, Ichino M, Yaguchi H, 2020. Improving symbolic data visualization for pattern recognition and knowledge discovery. Vis Inform, 4(1):23–31. https://doi.org/10.1016/j.visinf.2019.12.003
Wang FY, 2010. The emergence of intelligent enterprises: from CPS to CPSS. IEEE Intell Syst, 25(4):85–88. https://doi.org/10.1109/MIS.2010.104
Wang XM, Chou JK, Chen W, et al., 2018. A utility-aware visual approach for anonymizing multi-attribute tabular data. IEEE Trans Vis Comput Graph, 24(1):351–360. https://doi.org/10.1109/TVCG.2017.2745139
Wang XM, Chen W, Chou JK, et al., 2019. GraphProtector: a visual interface for employing and assessing multiple privacy preserving graph algorithms. IEEE Trans Vis Comput Graph, 25(1):193–203. https://doi.org/10.1109/TVCG.2018.2865021
Wang XM, Chen W, Xia JZ, et al., 2020a. ConceptExplorer: visual analysis of concept drifts in multi-source time-series data. IEEE Conf on Visual Analytics Science and Technology, p.1–11. https://doi.org/10.1109/VAST50239.2020.00006
Wang XM, Bryan CJ, Li YR, et al., 2020b. Umbra: a visual analysis approach for defense construction against inference attacks on sensitive information. IEEE Trans Vis Comput Graph, early access. https://doi.org/10.1109/TVCG.2020.3037670
Weng D, Zhu HM, Bao J, et al., 2018. Homefinder revisited: finding ideal homes with reachability-centric multi-criteria decision making. Proc CHI Conf on Human Factors in Computing Systems, Article 247. https://doi.org/10.1145/3173574.3173821
Xu L, 2020. Learning deep IA bidirectional intelligence. Front Inform Technol Electron Eng, 21(4):558–562. https://doi.org/10.1631/FITEE.1900541
Zhang TY, Feng HZ, Chen W, et al., 2021. ChartNavigator: an interactive pattern identification and annotation framework for charts. IEEE Trans Knowl Data Eng, early access. https://doi.org/10.1109/TKDE.2021.3094236
Zhou ZH, 2016. Machine Learning. Tsinghua University Press, Beijing, China (in Chinese).
Zhu SJ, Sun GD, Jiang Q, et al., 2020. A survey on automatic infographics and visualization recommendations. Vis Inform, 4(3):24–40. https://doi.org/10.1016/j.visinf.2020.07.002
Author information
Authors and Affiliations
Contributions
Wei CHEN conceptualized the main idea and led the research. Wei CHEN and Yunhai WANG surveyed the relevant materials. All the authors had in-depth discussions; they drafted, revised, and finalized the paper.
Corresponding author
Ethics declarations
Wei CHEN, Tianye ZHANG, Haiyang ZHU, Xumeng WANG, and Yunhai WANG declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 62132017)
Rights and permissions
About this article
Cite this article
Chen, W., Zhang, T., Zhu, H. et al. Perspectives on cross-domain visual analysis of cyber-physical-social big data. Front Inform Technol Electron Eng 22, 1559–1564 (2021). https://doi.org/10.1631/FITEE.2100553
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2100553