Abstract
A novel algorithm that combines the generalized labeled multi-Bernoulli (GLMB) filter with signal features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter features (EFs) are often unknown and time-varying. Aiming at the unknown feature problem, we propose a method for identifying EFs based on dynamic clustering of data fields. Because EFs are time-varying and the probability distribution is unknown, an improved fuzzy C-means algorithm is proposed to calculate the correlation coefficients between the target and measurements, to approximate the EF likelihood function. On this basis, the EF likelihood function is integrated into the recursive GLMB filter process to obtain the new prediction and update equations. Simulation results show that the proposed method can improve the tracking performance of multiple targets, especially in heavy clutter environments.
摘要
提出一种未知辐射源信号特征辅助的广义标签多伯努利滤波器。复杂电磁环境下,辐射源特征通常未知且随时间变化。针对辐射源特征未知的问题,提出一种基于数据场动态聚类的辐射源特征求解方法。针对辐射源特征时变以及对应的概率分布未知的问题,提出一种改进的模糊C-均值算法来计算目标和杂波量测的相关系数,以近似辐射源特征的似然函数。在此基础上,将辐射源特征集成到广义标签多伯努利滤波器中,从而获得新的递归方程。仿真结果表明,提出的方法可以提高对多目标的跟踪性能,尤其在强杂波环境中。
Similar content being viewed by others
References
Bar-Shalom Y, Kirubarajan T, Gokberk C, 2005. Tracking with classification-aided multiframe data association. IEEE Trans Aerosp Electron Syst, 41(3):868–878. https://doi.org/10.1109/TAES.2005.1541436
Battistelli G, Chisci L, Fantacci C, et al., 2013. Consensus CPHD filter for distributed multitarget tracking. IEEE J Sel Top Signal Process, 7(3):508–520. https://doi.org/10.1109/JSTSP.2013.2250911
Cao CH, Zhao YB, 2022. Range estimation based on symmetry polynomial aided Chinese remainder theorem for multiple targets in a pulse Doppler radar. Front Inform Technol Electron Eng, 23(2):304–316. https://doi.org/10.1631/FITEE.2000418
Chen HM, Li XR, Bar-Shalom Y, 2004. On joint track initiation and parameter estimation under measurement origin uncertainty. IEEE Trans Aerosp Electron Syst, 40(2):675–694. https://doi.org/10.1109/TAES.2004.1310013
Chen HM, Kirubarajan T, Bar-Shalom Y, 2008. Tracking of spawning targets with multiple finite resolution sensors. IEEE Trans Aerosp Electron Syst, 44(1):2–14. https://doi.org/10.1109/TAES.2008.4516985
Clark D, Ristic B, Vo BN, et al., 2010. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR. IEEE Trans Signal Process, 58(1):26–37. https://doi.org/10.1109/TSP.2009.2030640
Da K, Li TC, Zhu YF, et al., 2020. Gaussian mixture particle jump-Markov-CPHD fusion for multitarget tracking using sensors with limited views. IEEE Trans Signal Inform Process Netw, 6:605–616. https://doi.org/10.1109/TSIPN.2020.3016478
Da K, Li TC, Zhu YF, et al., 2021. Recent advances in multisensor multitarget tracking using random finite set. Front Inform Technol Electron Eng, 22(1):5–24. https://doi.org/10.1631/FITEE.2000266
Guo Q, Nan PL, Wan J, 2016. Signal classification method based on data mining for multi-mode radar. J Syst Eng Electron, 27(5):1010–1017. https://doi.org/10.21629/JSEE.2016.05.09
Guo YF, Fan KS, Peng DL, et al., 2015. A modified variable rate particle filter for maneuvering target tracking. Front Inform Technol Electron Eng, 16(11):985–994. https://doi.org/10.1631/FITEE.1500149
Guo YF, Tharmarasa R, Rajan S, et al., 2016. Passive tracking in heavy clutter with sensor location uncertainty. IEEE Trans Aerosp Electron Syst, 52(4):1536–1554. https://doi.org/10.1109/TAES.2016.140820
Guo YF, Li Y, Ren X, et al., 2020a. Multiple maneuvering extended target tracking based on Gaussian process. Acta Autom Sin, 46(11):2392–2403 (in Chinese). https://doi.org/10.16383/j.aas.c180849
Guo YF, Li Y, Xue AK, et al., 2020b. Simultaneous tracking of a maneuvering ship and its wake using Gaussian processes. Signal Process, 172:107547. https://doi.org/10.1016/j.sigpro.2020.107547
Herrmann M, Hermann C, Buchholz M, 2021. Distributed implementation of the centralized generalized labeled multi-Bernoulli filter. IEEE Trans Signal Process, 69:5159–5174. https://doi.org/10.1109/TSP.2021.3107632
Jin B, Li C, Guo J, et al., 2019. Multi-target tracking in clutter aided by Doppler information. J Univ Electron Sci Technol China, 48(4):511–517 (in Chinese). https://doi.org/10.3969/j.issn.1001-0548.2019.04.006
Li TC, Hlawatsch F, 2021. A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters. Inform Fus, 73:111–124. https://doi.org/10.1016/j.inffus.2021.02.020
Li TC, Sun SD, Bolić M, et al., 2016. Algorithm design for parallel implementation of the SMC-PHD filter. Signal Process, 119:115–127. https://doi.org/10.1016/j.sigpro.2015.07.013
Li TC, Su JY, Liu W, et al., 2017. Approximate Gaussian conjugacy: parametric recursive filtering under non-linearity, multimodality, uncertainty, and constraint, and beyond. Front Inform Technol Electron Eng, 18(12):1913–1939. https://doi.org/10.1631/FITEE.1700379
Li TC, Prieto J, Fan HQ, et al., 2018. A robust multisensor PHD filter based on multi-sensor measurement clustering. IEEE Commun Lett, 22(10):2064–2067. https://doi.org/10.1109/LCOMM.2018.2863387
Li TC, Liu Z, Pan Q, 2019. Distributed Bernoulli filtering for target detection and tracking based on arithmetic average fusion. IEEE Signal Process Lett, 26(12):1812–1816. https://doi.org/10.1109/LSP.2019.2950588
Liu C, Sun JP, Lei P, 2018. á-generalized labeled multi-Bernoulli filter using amplitude information of neighboring cells. Sensors, 18(4):1153. https://doi.org/10.3390/s18041153
Mahler R, 2007. PHD filters of higher order in target number. IEEE Trans Aerosp Electron Syst, 43(4):1523–1543. https://doi.org/10.1109/TAES.2007.4441756
Mahler RPS, 2003. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst, 39(4):1152–1178. https://doi.org/10.1109/TAES.2003.1261119
Mahler RPS, 2007. Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood, USA.
Peng H, Huang G, Tian W, et al., 2018. Labeled multi-Bernoulli filter based on amplitude information. Syst Eng Electron, 40(12):2636–2641. https://doi.org/10.3969/j.issn.1001-506X.2018.12.03
Ristic B, Vo BT, Vo BN, et al., 2013. A tutorial on Bernoulli filters: theory, implementation and applications. IEEE Trans Signal Process, 61(13):3406–3430. https://doi.org/10.1109/TSP.2013.2257765
Schuhmacher D, Vo BT, Vo BN, 2008. A consistent metric for performance evaluation of multi-object filters. IEEE Trans Signal Process, 56(8):3447–3457. https://doi.org/10.1109/TSP.2008.920469
Sun X, Li RW, Zhou LS, 2020. Multidimensional information fusion in active sonar via the generalized labeled multi-Bernoulli filter. IEEE Access, 8:211335–211347. https://doi.org/10.1109/ACCESS.2020.3039347
Vo BN, Ma WK, 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process, 54(11):4091–4104. https://doi.org/10.1109/TSP.2006.881190
Vo BN, Vo BT, Phung D, 2014. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans Signal Process, 62(24):6554–6567. https://doi.org/10.1109/TSP.2014.2364014
Vo BN, Vo BT, Hoang HG, 2017. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans Signal Process, 65(8):1975–1987. https://doi.org/10.1109/TSP.2016.2641392
Wang LP, Zhan RH, Huang Z, et al., 2021. Joint tracking and classification of extended targets with complex shapes. Front Inform Technol Electron Eng, 22(6):839–861. https://doi.org/10.1631/FITEE.2000061
Wu WH, Cai YC, Jin HB, et al., 2021. Derivation of the multi-model generalized labeled multi-Bernoulli filter: a solution to multi-target hybrid systems. Front Inform Technol Electron Eng, 22(1):79–87. https://doi.org/10.1631/FITEE.2000105
Yi W, Chai L, 2021. Heterogeneous multi-sensor fusion with random finite set multi-object densities. IEEE Trans Signal Process, 69:3399–3414. https://doi.org/10.1109/TSP.2021.3087033
Yi W, Jiang M, Hoseinnezhad R, 2017. The multiple model Vo-Vo filter. IEEE Trans Aerosp Electron Syst, 53(2):1045–1054. https://doi.org/10.1109/TAES.2017.2667300
Yi W, Li GC, Battistelli G, 2020. Distributed multi-sensor fusion of PHD filters with different sensor fields of view. IEEE Trans Signal Process, 68:5204–5218. https://doi.org/10.1109/TSP.2020.3021834
Zhou YQ, Zhu SL, 2015. GM-PHD filter with signal features of emitter. Asian J Contr, 17(5):1978–1983. https://doi.org/10.1002/asjc.1040
Zhu Y, Liang S, Wu XJ, et al., 2021. A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain. Front Inform Technol Electron Eng, 22(8):1114–1126. https://doi.org/10.1631/FITEE.2000209
Zhu YQ, 2015. Research on Tracking Techniques of Multiple Radar Emitter Targets Based on PHD Filter. PhD Thesis, National University of Defense Technology, Changsha, China (in Chinese).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Project supported by the National Major Research and Development Project of China (No. 2018YFE0206500), the National Natural Science Foundation of China (No. 62071140), the International Scientific and Technological Cooperation Program of China (No. 2015DFR10220), and the Technology Foundation for Basic Enhancement Plan, China (No. 2021-JCJQ-JJ-0301)
Contributors
Qiang GUO and Long TENG designed the research and addressed the problems. Long TENG processed the data and drafted the paper. Xinliang WU and Dayu HUANG helped with the technical information. Wenming SONG supervised the study and helped organize the paper. Qiang GUO and Long TENG revised and finalized the paper.
Compliance with ethics guidelines
Qiang GUO, Long TENG, Xinliang WU, Wenming SONG, and Dayu HUANG declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Guo, Q., Teng, L., Wu, X. et al. Generalized labeled multi-Bernoulli filter with signal features of unknown emitters. Front Inform Technol Electron Eng 23, 1871–1880 (2022). https://doi.org/10.1631/FITEE.2200286
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200286
Key words
- Multi-target tracking
- Generalized labeled multi-Bernoulli
- Signal features of emitter
- Fuzzy C-means
- Dynamic clustering