Abstract
Physical layer key generation (PKG) technology leverages reciprocal channel randomness to generate shared secret keys. However, multipath fading at the receiver may degrade the correlation between legitimate uplink and downlink channels, resulting in a low key generation rate (KGR). In this paper, we propose a PKG scheme based on the pattern-reconfigurable antenna (PRA) to boost the secret key capacity. First, we propose a reconfigurable intelligent surface (RIS) based PRA architecture with the capability of flexible and reconfigurable antenna patterns. Then, we present the PRA-based PKG protocol to improve the KGR via mitigation of the effects of multipath fading. Specifically, a novel algorithm for estimation of the multipath channel parameters is proposed based on atomic norm minimization. Thereafter, a novel optimization method for the matching reception of multipath signals is formulated based on the improved binary particle swarm optimization (BPSO) algorithm. Finally, simulation results show that the proposed scheme can resist multipath fading and achieve a high KGR compared to existing schemes. Moreover, our findings indicate that the increased degree of freedom of the antenna patterns can significantly increase the secret key capacity.
摘要
物理层密钥生成技术利用无线信道的互易性、 随机性生成共享密钥. 然而, 多径衰落会降低上行链路和下行链路之间的相关性, 从而导致较低的密钥生成速率. 本文提出一种基于方向图可重构天线的物理层密钥生成方案提升密钥容量. 具体地, 我们设计了一种基于智能超表面(Reconfigurable reflecting surface, RIS)的可重构天线架构, 利用灵活重构天线方向图的能力, 提出基于可重构天线的物理层密钥生成协议. 通过提出的基于原子范数最小化的多径信道估计算法以及多径信号匹配接收优化算法, 可以实现通过减轻多径衰落的影响提高密钥生成速率. 仿真结果表明, 与现有方案相比, 所提出方案能抵抗多径衰落并实现较高的密钥生成速率. 此外, 研究结果表明, 天线方向图自由度的增加可以显着增加密钥容量.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Alexandropoulos GC, Vlachos E, 2020. A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.9175–9179. https://doi.org/10.1109/ICASSP40776.2020.9053976
Alexandropoulos GC, Vinieratou I, Wymeersch H, 2022. Localization via multiple reconfigurable intelligent surfaces equipped with single receive RF chains. IEEE Wirel Commun Lett, 11(5):1072–1076. https://doi.org/10.1109/LWC.2022.3156427
Cheng Q, Zhang L, Dai JY, et al., 2022. Reconfigurable intelligent surfaces: simplified-architecture transmitters—from theory to implementations. Proc IEEE, 110(9):1266–1289. https://doi.org/10.1109/JPROC.2022.3170498
Dai LL, Wang BC, Wang M, et al., 2020. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access, 8:45913–45923. https://doi.org/10.1109/ACCESS.2020.2977772
He JG, Wymeersch H, Juntti M, 2021. Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization. IEEE Trans Wirel Commun, 20(9):5786–5797. https://doi.org/10.1109/TWC.2021.3070064
Hu L, Li GY, Qian XW, et al., 2022. Joint transmit and reflective beamforming for RIS-assisted secret key generation. Proc IEEE Global Communications Conf, p.2352–2357.
Ji XS, Wu JX, Jin L, et al., 2022. Discussion on a new paradigm of endogenous security towards 6G networks. Front Inform Technol Electron Eng, 23(10):1421–1450. https://doi.org/10.1631/FITEE.2200060
Ji ZJ, Yeoh PL, Zhang DY, et al., 2021. Secret key generation for intelligent reflecting surface assisted wireless communication networks. IEEE Trans Veh Technol, 70(1):1030–1034. https://doi.org/10.1109/TVT.2020.3045728
Jian MN, Alexandropoulos GC, Basar E, et al., 2022. Reconfigurable intelligent surfaces for wireless communications: overview of hardware designs, channel models, and estimation techniques. Intell Converg Netw, 3(1):1–32. https://doi.org/10.23919/ICN.2022.0005
Jin L, Hu XY, Lou YM, et al., 2021. Introduction to wireless endogenous security and safety: problems, attributes, structures and functions. China Commun, 18(9):88–99. https://doi.org/10.23919/JCC.2021.09.008
Khanesar MA, Teshnehlab M, Shoorehdeli MA, 2007. A novel binary particle swarm optimization. Proc Mediterranean Conf on Control & Automation, p.1–6. https://doi.org/10.1109/MED.2007.4433821
Lin MT, Xu M, Wan X, et al., 2021. Single sensor to estimate DOA with programmable metasurface. IEEE Int Things J, 8(12):10187–10197. https://doi.org/10.1109/JIOT.2021.3051014
Lou YM, Jin L, Sun XL, et al., 2022. Multi-path separation and parameter estimation by single DMA in fading channel. IET Commun, 16(13):1475–1485. https://doi.org/10.1049/cmu2.12341
Lu Y, Hao M, Mackenzie R, 2022. Reconfigurable intelligent surface based hybrid precoding for THz communications. Intell Converg Netw, 3(1):103–118. https://doi.org/10.23919/ICN.2022.0003
Qian XW, Di Renzo M, 2021. Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces. IEEE Wirel Commun Lett, 10(6):1183–1187. https://doi.org/10.1109/LWC.2021.3061449
Saenz E, Ederra I, Gonzalo R, et al., 2009. Coupling reduction between dipole antenna elements by using a planar meta-surface. IEEE Trans Antenn Propag, 57(2):383–394. https://doi.org/10.1109/TAP.2008.2011249
Shlezinger N, Alexandropoulos GC, Imani MF, et al., 2021. Dynamic metasurface antennas for 6G extreme massive MIMO communications. IEEE Wirel Commun, 28(2):106–113. https://doi.org/10.1109/MWC.001.2000267
Tse D, Viswanath P, 2005. Fundamentals of Wireless Communication. Cambridge University Press, Cambridge, UK.
Wan Z, Huang KZ, Lou YM, et al., 2021. Channel covariance matrix based secret key generation for low-power terminals in frequency division duplex systems. Electron Lett, 57(8):324–327. https://doi.org/10.1049/ell2.12123
Wu GB, Dai JY, Cheng Q, et al., 2022. Sideband-free space-time-coding metasurface antennas. Nat Electron, 5(11):808–819. https://doi.org/10.1038/s41928-022-00857-0
Wu W, Wu Z, Liang WL, 2019. Metasurface inspired pattern reconfigurable antenna. Proc IEEE MTT-S Int Wireless Symp, p.1–3. https://doi.org/10.1109/IEEE-IWS.2019.8804018
Yang XM, Liu XG, Zhou XY, et al., 2012. Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials. IEEE Antenn Wirel Propag Lett, 11:389–391. https://doi.org/10.1109/LAWP.2012.2193111
Zhang HL, Song LY, Han Z, et al., 2021. Spatial equalization before reception: reconfigurable intelligent surfaces for multi-path mitigation. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.8062–8066. https://doi.org/10.1109/ICASSP39728.2021.9414612
Zhang L, Chen XQ, Liu S, et al., 2018. Space-time-coding digital metasurfaces. Nat Commun, 9(1):4334. https://doi.org/10.1038/s41467-018-06802-0
Zhou RY, Chen XY, Tang WK, et al., 2022. Modeling and measurements for multi-path mitigation with reconfigurable intelligent surfaces. Proc 16th European Conf on Antennas and Propagation, p.1–5. https://doi.org/10.23919/EuCAP53622.2022.9769365
Author information
Authors and Affiliations
Contributions
Zheng WAN and Mengyao YAN designed the research and initiated the work. Kaizhi HUANG drafted the paper. Zhou ZHONG and Xiaoming XU helped organize the paper. Zheng WAN, Yajun CHEN, and Fan WU revised and finalized the paper.
Corresponding author
Ethics declarations
Zheng WAN, Mengyao YAN, Kaizhi HUANG, Zhou ZHONG, Xiaoming XU, Yajun CHEN, and Fan WU declare that they have no conflict of interest.
Additional information
Project supported by the National Key Research and Development Program of China (Nos. 2022YFB2902202 and 2022YFB2902205) and the National Natural Science Foundation of China (No. U22A2001)
Rights and permissions
About this article
Cite this article
Wan, Z., Yan, M., Huang, K. et al. Pattern-reconfigurable antenna-assisted secret key generation from multipath fading channels. Front Inform Technol Electron Eng 24, 1803–1814 (2023). https://doi.org/10.1631/FITEE.2300126
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300126
Key words
- Physical layer security
- Secret key generation
- Reconfigurable intelligent surface
- Multipath fading
- Pattern-reconfigurable antenna