Abstract
We demonstrate a low-noise, high-gain, and large-dynamic-range photodetector (PD) based on a junction field-effect transistor (JFET) and a charge amplifier for the measurement of quantum noise in Bell-state detection (BSD). Particular photodiode junction capacitance allows the silicon N-channel JFET 2sk152 to be matched to the noise requirement for charge amplifier A250. The electronic noise of the PD is effectively suppressed and the signal-to-noise ratio (SNR) is up to 15 dB at the analysis frequency of 2.75 MHz for a coherent laser power of 50.08 µW. By combining of the inductor and capacitance, the alternating current (AC) and direct current (DC) branches of the PD can operate linearly in a dynamic range from 25.06 µW to 17.50 mW. The PD can completely meet the requirements of SNR and dynamic range for BSD in quantum optics experiments.
摘要
设计一种基于J型场效应管和电荷放大器的低噪声、 高增益、 大动态范围光电探测器, 用于贝尔态探测中量子噪声的测量. 特定光电二极管的结电容允许硅N沟道J型场效应管2sk152匹配电荷放大器A250的噪声要求. 当相干激光功率为50.08 μW时, 在2.75 MHz分析频率处, 光电探测器的电子噪声得到有效抑制, 信噪比高达15 dB. 通过电感和电容组合, 光电探测器的交流和直流支路可以在25.06 μW~17.50 mW的动态范围内线性工作. 该光电探测器可以完全满足量子光学实验中贝尔态探测对信噪比和动态范围的要求.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Appel J, Hoffman D, Figueroa E, et al., 2007. Electronic noise in optical homodyne tomography. Phys Rev A, 75(3):035802. https://doi.org/10.1103/PhysRevA.75.035802
Bickman S, DeMille D, 2005. Large-area, low-noise, high-speed, photodiode-based fluorescence detectors with fast overdrive recovery. Rev Sci Instrum, 76(11):113101. https://doi.org/10.1063/1.2126575
Bowden W, Vianello A, Hobson R, 2019. A low-noise resonant input transimpedance amplified photodetector. Rev Sci Instrum, 90(10):106106. https://doi.org/10.1063/1.5114896
Breitenbach G, Schiller S, Mlynek J, 1997. Measurement of the quantum states of squeezed light. Nature, 387(6632):471–475. https://doi.org/10.1038/387471a0
Graeme J, 1995. Photodiode Amplifiers: OP AMP Solutions. McGraw-Hill, New York, USA, p.4–7.
Gray MB, Shaddock DA, Harb CC, et al., 1998. Photodetector designs for low-noise, broadband, and high-power applications. Rev Sci Instrum, 69(11):3755–3762. https://doi.org/10.1063/1.1149175
Huang D, Fang J, Wang C, et al., 2013. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution. Chin Phys Lett, 30(11):114209. https://doi.org/10.1088/0256-307X/30/11/114209
Jin XL, Su J, Zheng YH, et al., 2015. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt Expr, 23(18):23859–23866. https://doi.org/10.1364/OE.23.023859
Kumar R, Barrios E, MacRae A, et al., 2012. Versatile wideband balanced detector for quantum optical homodyne tomography. Opt Commun, 285:5259–5267. https://doi.org/10.1016/j.optcom.2012.07.103
Langenfeld S, Welte S, Hartung L, et al., 2021. Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys Rev Lett, 126:130502. https://doi.org/10.1103/PhysRevLett.126.130502
Li XW, Fu X, Yan F, et al., 2022. Current status and future development of quantum computation. Strat Study CAE, 24(4):133–144 (in Chinese). https://doi.org/10.15302/J-SSCAE-2022.04.016
Lim CCW, Xu FH, Pan JW, et al., 2021. Security analysis of quantum key distribution with small block length and its application to quantum space communications. Phys Rev Lett, 126(10):100501. https://doi.org/10.1103/PhysRevLett.126.100501
Lin J, Ji YJ, Zhao J, et al., 2022. Development strategy of quantum-based deep geophysical exploration technology and equipment. Strat Study CAE, 24(4):156–166 (in Chinese). https://doi.org/10.15302/J-SSCAE-2022.04.017
Liu MM, Krämer J, Hu YP, et al., 2017. Quantum security analysis of a lattice-based oblivious transfer protocol. Front Inform Technol Electron Eng, 18(9):1348–1369. https://doi.org/10.1631/FITEE.1700039
Liu SS, Lou YB, Jing JT, 2020. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat Commun, 11(1):3875. https://doi.org/10.1038/s41467-020-17616-4
Ma HQ, Han YX, Dou TQ, et al., 2023. Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology. Chin Phys B, 32(2):020304. https://doi.org/10.1088/1674-1056/ac6ee3
Masalov AV, Kuzhamuratov A, Lvovsky AI, 2017. Noise spectra in balanced optical detectors based on transimpedance amplifiers. Rev Sci Instrum, 88(11):113109. https://doi.org/10.1063/1.5004561
Okubo R, Hirano M, Zhang Y, et al., 2008. Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz. Opt Lett, 33(13):1458–1460. https://doi.org/10.1364/OL.33.001458
Palmer C, 2023. Quantum cryptography competition yields next-generation standard algorithms. Engineering, 21:6–8. https://doi.org/10.1016/j.eng.2022.12.002
Pirandola S, Andersen UL, Banchi L, et al., 2020. Advances in quantum cryptography. Adv Opt Photon, 12(4):1012–1236. https://doi.org/10.1364/AOP.361502
Qin JL, Yan ZH, Huo MR, et al., 2016. Design of low-noise photodetector with a bandwidth of 130 MHz based on transimpedance amplification circuit. Chin Opt Lett, 14(12):122701. https://doi.org/10.3788/COL201614.122701
Shi SP, Tian L, Wang YJ, et al., 2020. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys Rev Lett, 125(7):070502. https://doi.org/10.1103/PhysRevLett.125.070502
Shi SP, Wang YJ, Tian L, et al., 2023. Continuous variable quantum teleportation network. Laser Photon Rev, 17:2200508. https://doi.org/10.1002/lpor.202200508
Tian L, Shi SP, Tian YH, et al., 2021. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front Phys, 16(2):21502. https://doi.org/10.1007/s11467-020-1012-2
Tian Y, Wang P, Liu JQ, et al., 2022. Experimental demonstration of continuous-variable measurement-device-independent quantum key distribution over optical fiber. Optica, 9(5):492–500. https://doi.org/10.1364/OPTICA.450573
Vahlbruch H, Mehmet M, Danzmann K, et al., 2016. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys Rev Lett, 117(11):110801. https://doi.org/10.1103/PhysRevLett.117.110801
Wang JR, Zhang WH, Tian L, et al., 2019. Balanced homodyne detector with independent phase control and noise detection branches. IEEE Access, 7:57054–57059. https://doi.org/10.1109/ACCESS.2019.2914145
Wang JR, Zhang HY, Zhao ZL, et al., 2020. Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector. Chin Phys B, 29(12):124207. https://doi.org/10.1088/1674-1056/abbbfb
Wang SF, Xiang X, Zhou CH, et al., 2017. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification. Rev Sci Instrum, 88(1):013107. https://doi.org/10.1063/1.4973853
Wang XB, 2018. The front, theory and practice of quantum communication. Strat Study CAE, 20(6):87–92 (in Chinese). https://doi.org/10.15302/J-SSCAE-2018.06.014
Weigang L, Enamoto LM, Li DL, et al., 2022. New directions for artificial intelligence: human, machine, biological, and quantum intelligence. Front Inform Technol Electron Eng, 23(6):984–990. https://doi.org/10.1631/FITEE.2100227
Yang WH, Shi SP, Wang YJ, et al., 2017. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt Lett, 42(21):4553–4556. https://doi.org/10.1364/OL.42.004553
Yang X, Su B, Wu YX, et al., 2019. Enhanced bandwidth, high gain, low noise transimpedance amplifier for asynchronous optical sampling systems. Rev Sci Instrum, 90(6):063103. https://doi.org/10.1063/1.5089117
Yu HF, Bai L, 2021. Post-quantum blind signcryption scheme from lattice. Front Inform Technol Electron Eng, 22(6):891–901. https://doi.org/10.1631/FITEE.2000099
Yuen HP, Chan VWS, 1983. Noise in homodyne and heterodyne detection. Opt Lett, 8(3):177–179. https://doi.org/10.1364/OL.8.000177
Zhang J, Peng KC, 2000. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys Rev A, 62:064302. https://doi.org/10.1103/PhysRevA.62.064302
Zhang X, Gao F, Qin SJ, et al., 2022. Current status and future development of quantum cryptographic protocols. Strat Study CAE, 24(4):145–155 (in Chinese). https://doi.org/10.15302/J-SSCAE-2022.04.015
Zhou HJ, Yang WH, Li ZX, et al., 2014. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement. Rev Sci Instrum, 85(1):013111. https://doi.org/10.1063/1.4862295
Zhou HJ, Wang WZ, Chen CY, et al., 2015. A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure. IEEE Sens J, 15(4):2101–2105. https://doi.org/10.1109/JSEN.2014.2371893
Author information
Authors and Affiliations
Contributions
Jinrong WANG designed the research. Chengdong MI processed the data. Shuang’e WU drafted the paper. Yaner QIU helped organize the paper. Jinrong WANG and Xin’ai BAI revised and finalized the paper.
Corresponding author
Ethics declarations
Jinrong WANG, Shuang’e WU, Chengdong MI, Yaner QIU, and Xin’ai BAI declare that they have no conflict of interest.
Additional information
Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (Nos. 2021L562 and 2022L573), the Key Research and Development Projects for Attarcting High-Level Scientific and Technological Talents to Lvliang City (No. 2021RC-2-27), the Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques (South China University of Technology) (No. 2021-06), the Key Research and Development Projects in the Field of Social Development of Lvliang City (No. 2022SHFZ43), Higher Education Reform and Innovation Project of Shanxi Province, China (Nos. J2021718, J2021744, and J2021717), and the Innovation and Entrepreneurship Training Program for College Students, China (No. 202310812012)
Rights and permissions
About this article
Cite this article
Wang, J., Wu, S., Mi, C. et al. A low-noise, high-gain, and large-dynamic-range photodetector based on a JFET and a charge amplifier. Front Inform Technol Electron Eng 25, 316–322 (2024). https://doi.org/10.1631/FITEE.2300340
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2300340
Key words
- Quantum noise
- Bell-state detection (BSD)
- Photodetector (PD)
- Junction field-effect transistor (JFET)
- Charge amplifier