概要
目的:由于现有的电动液压泵的驱动性能(压力和流量)有限,所以本文期望通过采用数字制造和堆叠的方式来提高电动液压泵的输出压力和流量。 创新点:1. 通过数字制造的方式实现可弯可扭的电动液压泵;2. 采用设计和加工后的电动液压泵来驱动偏心执行器。 方法:1. 采用实验的方式测量堆叠式电动液压泵的输出压力和流量,并与单层式电动液压泵的输出压力和流量进行对比;2. 通过驱动柔性偏心执行器的方式,评估其响应特性,并用弯曲角度大小来衡量泵源的性能。 结论:1. 设计、制造和表征了单层式和堆叠式电动液压泵。2. 通过性能比较可知,堆叠式电动液压泵的输出压力和流速分别为15.8 kPa和37.02 mL/min,而单层式电动液压泵的输出压力和流速分别为3.2 kPa和24.09 mL/min。3. 堆叠式电动液压泵驱动的偏心执行器可在8 s内实现240°的偏转角度,并在3 s内快速返回到原始位置。
References
Cacucciolo V, Shintake J, Kuwajima Y, et al., 2019. Stretchable pumps for soft machines. Nature, 572(7770):516–519. https://doi.org/10.1038/s41586-019-1479-6
Cacucciolo V, Nabae H, Suzumori K, et al., 2020. Electrically-driven soft fluidic actuators combining stretchable pumps with thin McKibben muscles. Frontiers in Robotics and AI, 6:146. https://doi.org/10.3389/frobt.2019.00146
Cheng M, Han ZN, Ding RQ, et al., 2021. Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll-pitch-yaw spherical wrist. Frontiers of Mechanical Engineering, 16:698–710. https://doi.org/10.1007/s11465-021-0646-2
Darabi J, Rada M, Ohadi M, et al., 2002. Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. Journal of Microelectromechanical Systems, 11(6):684–690. https://doi.org/10.1109/JMEMS.2002.805046
de Volder M, Reynaerts D, 2010. Pneumatic and hydraulic microactuators: a review. Journal of Micromechanics and Microengineering, 20(4):043001. https://doi.org/10.1088/0960-1317/20/4/043001
Ding RQ, Cheng M, Jiang L, et al., 2021. Active fault-tolerant control for electro-hydraulic systems with an independent metering valve against valve faults. IEEE Transactions on Industrial Electronics, 68(8):7221–7232. https://doi.org/10.1109/TIE.2020.3001808
Jung JC, Rodrigue H, 2019. Film-based anisotropic balloon inflatable bending actuator. Journal of Mechanical Science and Technology, 33(9):4469–4476. https://doi.org/10.1007/s12206-019-0843-7
Kim JY, Mazzoleni N, Bryant M, 2021. Modeling of resistive forces and buckling behavior in variable recruitment fluidic artificial muscle bundles. Actuators, 10(3):42. https://doi.org/10.3390/act10030042
Kong DQ, Qian Y, Kurosawa MK, et al., 2021. Evaluation method for acoustic underwater propulsion systems. The Journal of the Acoustical Society of America, 150(2):1157–1164. https://doi.org/10.1121/10.0005657
Li YQ, Ren T, Chen YH, et al., 2021. Untethered multimode fluidic actuation: a new approach to soft and compliant robotics. Soft Robotics, 8(1):71–84. https://doi.org/10.1089/soro.2019.0131
Mao ZB, Yoshida K, Kim JW, 2019a. Developing O/O (oil-in-oil) droplet generators on a chip by using ECF (electro-conjugate fluid) micropumps. Sensors and Actuators B: Chemical, 296:126669. https://doi.org/10.1016/j.snb.2019.126669
Mao ZB, Yoshida K, Kim JW, 2019b. A droplet-generator-on-a-chip actuated by ECF (electro-conjugate fluid) micropumps. Microfluidics and Nanofluidics, 23(12):130. https://doi.org/10.1007/s10404-019-2298-7
Mao ZB, Yoshida K, Kim JW, 2019c. Droplet sorter using a cantilever actuated by electro-conjugate fluid micropumps. Proceedings of the 23rd International Conference on Mechatronics Technology, p.1–4. https://doi.org/10.1109/ICMECT.2019.8932111
Mao ZB, Yoshida K, Kim JW, 2020a. Active sorting of droplets by using an ECF (electro-conjugate fluid) micropump. Sensors and Actuators A: Physical, 303:111702. https://doi.org/10.1016/j.sna.2019.111702
Mao ZB, Kuroki M, Otsuka Y, et al., 2020b. Contraction waves in self-oscillating polymer gels. Extreme Mechanics Letters, 39:100830. https://doi.org/10.1016/j.eml.2020.100830
Mao ZB, Nagaoka T, Yokota S, et al., 2020c. Soft fiber-reinforced bending finger with three chambers actuated by ECF (electro-conjugate fluid) pumps. Sensors and Actuators A: Physical, 310:112034. https://doi.org/10.1016/j.sna.2020.112034
Mao ZB, Iizuka T, Maeda S, 2021a. Bidirectional electrohydrodynamic pump with high symmetrical performance and its application to a tube actuator. Sensors and Actuators A: Physical, 332:113168. https://doi.org/10.1016/j.sna.2021.113168
Mao ZB, Shimamoto G, Maeda S, 2021b. Conical frustum gel driven by the Marangoni effect for a motor without a stator. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608:125561. https://doi.org/10.1016/j.colsurfa.2020.125561
Murakami T, Kuwajima Y, Wiranata A, et al., 2021. A DIY fabrication approach for ultra-thin focus-tunable liquid lens using electrohydrodynamic pump. Micromachines, 12(12):1452. https://doi.org/10.3390/mi12121452
Peirs J, Reynaerts D, van Brussel H, 2001. A miniature manipulator for integration in a self-propelling endoscope. Sensors and Actuators A: Physical, 92(1–3):343–349. https://doi.org/10.1016/S0924-4247(01)00570-2
Seki Y, Kuwajima Y, Shigemune H, et al., 2020. Optimization of the electrode arrangement and reliable fabrication of flexible EHD pumps. Journal of Robotics and Mechatronics, 32(5):939–946. https://doi.org/10.20965/jrm.2020.p0939
Shepherd RF, Ilievski F, Choi W, et al., 2011. Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 108(51):20400–20403. https://doi.org/10.1073/pnas.1116564108
Sinatra NR, Ranzani T, Vlassak JJ, et al., 2018. Nanofiberreinforced soft fluidic micro-actuators. Journal of Micromechanics and Microengineering, 28(8):084002. https://doi.org/10.1088/1361-6439/aab373
Sun EL, Wang T, Zhu SQ, 2020. An experimental study of bellows-type fluidic soft bending actuators under external water pressure. Smart Materials and Structures, 29(8):087005. https://doi.org/10.1088/1361-665X/ab9518
Wang HM, Qu SX, 2016. Constitutive models of artificial muscles: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(1):22–36. https://doi.org/10.1631/jzus.A1500207
Wapner PG, Hoffman WP, 2002. Hydraulic actuation based on flow of non-wetting fluids in micro-channels. Sensors and Actuators B: Chemical, 85(1–2):52–60. https://doi.org/10.1016/S0925-4005(02)00053-9
Wiranata A, Maeda S, 2021. A deformable linear dielectric elastomer actuator. KeyEngineeringMaterials, 884:430–436. https://doi.org/10.4028/www.scientific.net/KEM.884.430
Wiranata A, Ohsugi Y, Minaminosono A, et al., 2021a. A DIY fabrication approach of stretchable sensors using carbon nano tube powder for wearable device. Frontiers in Robotics and AI, 8:773056. https://doi.org/10.3389/frobt.2021.773056
Wiranata A, Ishii Y, Hosoya N, et al., 2021b. Simple and reliable fabrication method for polydimethylsiloxane dielectric elastomer actuators using carbon nanotube powder electrodes. Advanced Engineering Materials, 23(6):2001181. https://doi.org/10.1002/adem.202001181
Xu B, Sun YH, Zhang JH, et al., 2015a. A new design method for the transition region of the valve plate for an axial piston pump. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(3):229–240. https://doi.org/10.1631/jzus.A1400266
Xu B, Wang QN, Zhang JH, 2015b. Effect of case drain pressure on slipper/swashplate pair within axial piston pump. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(12):1001–1014. https://doi.org/10.1631/jzus.A1500182
Xu B, Hu M, Zhang JH, et al., 2016. Characteristics of volumetric losses and efficiency of axial piston pump with respect to displacement conditions. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(3):186–201. https://doi.org/10.1631/jzus.A1500197
Ye SG, Zhang JH, Xu B, et al., 2019. Theoretical investigation of the contributions of the excitation forces to the vibration of an axial piston pump. Mechanical Systems and Signal Processing, 129:201–217. https://doi.org/10.1016/j.ymssp.2019.04.032
Yoshimura K, Otsuka Y, Mao ZB, et al., 2020. Autonomous oil flow generated by self-oscillating polymer gels. Scientific Reports, 10(1):12834. https://doi.org/10.1038/s41598-020-69804-3
Zhang JH, Wang D, Xu B, et al., 2018. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):417–430. https://doi.org/10.1631/jzus.A1700164
Author information
Authors and Affiliations
Contributions
Ze-bing MAO and Yota ASAI designed the research. Ze-bing MAO and Ardi WIRANATA processed the corresponding data and wrote the first draft of the manuscript. De-qing KONG and Jia MAN helped to organize the manuscript. Ze-bing MAO, Yota ASAI, and Ardi WIRANATA revised and edited the final version.
Corresponding author
Additional information
Conflict of interest
Ze-bing MAO, Yota ASAI, Ardi WIRANATA, De-qing KONG, and Jia MAN declare that they have no conflict of interest.
Electronic supplementary materials
Video S1
Electronic Supplementary Material
Supplementary material, approximately 2.13 MB.
Rights and permissions
About this article
Cite this article
Mao, Zb., Asai, Y., Wiranata, A. et al. Eccentric actuator driven by stacked electrohydrodynamic pumps. J. Zhejiang Univ. Sci. A 23, 329–334 (2022). https://doi.org/10.1631/jzus.A2100468
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.A2100468