Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Role of vitamin B12 on methylmalonyl-CoA mutase activity

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Vitamin B12 is an organometallic compound with important metabolic derivatives that act as cofactors of certain enzymes, which have been grouped into three subfamilies depending on their cofactors. Among them, methylmalonyl-CoA mutase (MCM) has been extensively studied. This enzyme catalyzes the reversible isomerization of L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (AdoCbl) as a cofactor participating in the generation of radicals that allow isomerization of the substrate. The crystal structure of MCM determined in Propionibacterium freudenreichii var. shermanii has helped to elucidate the role of this cofactor AdoCbl in the reaction to specify the mechanism by which radicals are generated from the coenzyme and to clarify the interactions between the enzyme, coenzyme, and substrate. The existence of human methylmalonic acidemia (MMA) due to the presence of mutations in MCM shows the importance of its role in metabolism. The recent crystallization of the human MCM has shown that despite being similar to the bacterial protein, there are significant differences in the structural organization of the two proteins. Recent studies have identified the involvement of an accessory protein called MMAA, which interacts with MCM to prevent MCM’s inactivation or acts as a chaperone to promote regeneration of inactivated enzyme. The interdisciplinary studies using this protein as a model in different organisms have helped to elucidate the mechanism of action of this isomerase, the impact of mutations at a functional level and their repercussion in the development and progression of MMA in humans. It is still necessary to study the mechanisms involved in more detail using new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abend, A., Bandarian, V., Nitsche, R., Stupperich, E., Rétey, J., Reed, G., 1999. Ethanolamine ammonia-lyase has a ‘base-on’ binding mode for coenzyme B12. Arch. Biochem. Biophys., 370(1):138–141. [doi:10.1006/abbi.1999.1382]

    Article  PubMed  CAS  Google Scholar 

  • Andrews, E., Jansen, R., Crane, M., Cholin, S., McDonell, D., Ledley, F., 1993. Expression of recombinant human methylmalonyl CoA mutase: in primary mut fibroblast and Saccharomyces cerevisiae. Biochem. Med. Metab. Biol., 50(2):135–144. [doi:10.1006/bmmb.1993.1055]

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, R., 2001. Cobalamin Coenzymes and Vitamin B12. eLS, John Wiley & Sons, Ltd. [doi:10.1038/npg.els.0000666]

  • Banerjee, R., Vlasie, M., 2002. Controlling the reactivity of radical intermediates by coenzyme B12 dependent methylmalonyl CoA mutase. Biochem. Soc. Transact., 30(4): 621–624. [doi:10.1042/bst0300621]

    Article  CAS  Google Scholar 

  • Barker, H., Weissbach, H., Smyth, R., 1958. A coenzyme containing pseudovitamin B12. PNAS, 44(11):1093–1097. [doi:10.1073/pnas.44.11.1093]

    Article  PubMed  CAS  Google Scholar 

  • Berkovitch, F., Besad, E., Tang, K., Enns, E., Frey, P., Drenan C., 2004. A locking mechanism preventing radical damage in the absence of substrate, as revealed by the X-ray structure of lysine 5,6-aminomutase. PNAS, 101(45): 15870–15875. [doi:10.1073/pnas.0407074101]

    Article  PubMed  CAS  Google Scholar 

  • Bobik, T.A., Rasche, M.E., 2001. Identification of the human methylmalonyl CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J. Biol. Chem., 276(40): 37194–37198. [doi:10.1074/jbc.M107232200]

    Article  PubMed  CAS  Google Scholar 

  • Booker, S., Licht, S., Broderick, J., Stubbe, J., 1994. Coenzyme B12-dependent ribonucleotide reductase: evidence for the participation of five cysteine residues in ribonucleotide reduction. Biochemistry, 33(42):12676–12685. [doi:10.1021/bi00208a019]

    Article  PubMed  CAS  Google Scholar 

  • Bradbeer, C., 1965. The clostridial fermentations of choline and ethanolamine. J. Biol. Chem., 240(12):4669–4674.

    PubMed  CAS  Google Scholar 

  • Brooks, A., Vlasie, M., Banerjee, R., Brunold, T., 2004. Spectroscopic and computational studies on the adenosylcobalamin dependent methylmalonyl-CoA mutase: evaluation of enzymatic contributions to Co-C bond activation in the Co3+ ground state. J. Am. Chem. Soc., 126(26): 8167–8180. [doi:10.1021/ja039114b]

    Article  PubMed  CAS  Google Scholar 

  • Brooks, A., Vlasie, M., Banerjee, R., Brunold, T., 2005. Co-C bond activation in methylmalonyl-CoA mutase by estabilization of the post-homolysis product Co2+ cobalamin. J. Am. Chem. Soc., 127(47):16522–16528. [doi:10.1021/ ja0503736]

    Article  PubMed  CAS  Google Scholar 

  • Buckel, W., Golding, B., 1996. Glutamate and 2-methyleneglutarate mutase: from microbial curiosities to paradigms for coenzyme B12-dependent enzymes. Chem. Soc. Rev., 5(25):329–337. [doi:10.1039/CS9962500329]

    Article  Google Scholar 

  • Cannata, J.B., Focesi, A., Mazumder, R., Warner, R., Ochoa, S., 1965. Metabolism of propionic acid in animal tissues: properties of mammalian methylmalonyl coenzyme A mutase. J. Biol. Chem., 240(8):3249–3257.

    PubMed  CAS  Google Scholar 

  • Chowdhury, S., Banerjee, R., 1999. Role of the dimethylbenzimidazole tail in the reaction catalyzed by coenzyme B12 dependent methylmalonyl-CoA mutase. Biochemistry, 38(46):15287–15294. [doi:10.1021/bi9914762]

    Article  PubMed  CAS  Google Scholar 

  • Cracan, V., Banerjee, R., 2012. A novel coenzyme B12-dependent intercorversion of isovaleryl-CoA and pivalyl-CoA. J. Biol. Chem., 287(6):3723–3732. [doi:10.1074/jbc. M111.320051]

    Article  PubMed  CAS  Google Scholar 

  • Cracan, V., Padovani, D., Banerjee, R., 2010. IcmF is a fusion between the radical B12 enzyme isobutyryl-CoA mutase and its G-protein chaperone. J. Biol. Chem., 285(1): 655–666. [doi:10.1074/jbc.M109.062182]

    Article  PubMed  CAS  Google Scholar 

  • Dobson, M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Doré, C., Hudson, T., Rosenblatt, D., Gravel, R., 2002. Identification of the gene responsible for the cblA complementation group of vitamin B12 responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. PNAS, 99(24):15554–15559. [doi:10.1073/pnas.242614799]

    Article  PubMed  CAS  Google Scholar 

  • Erb, T., Rétey, J., Fuchs, G., Alber, B., 2008. Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J. Biol. Chem., 283(47):32283–32293. [doi:10. 1074/jbc.M805527200]

    Article  PubMed  CAS  Google Scholar 

  • Erfle, D., Clark, M., Nystrom, R., Johnson, C., 1964. Direct hydrogen transfer by methylmalonyl coenzyme A mutase. J. Biol. Chem., 239(6):1920–1924.

    PubMed  CAS  Google Scholar 

  • Faust, L., Babior, B., 1992. Overexpression, purification and some properties of the AdoCbl-dependent ethanolamine ammonia-lyase from Salmonella typhimurium. Arch. Biochem. Biophys., 294(1):50–54. [doi:10.1016/0003-9861 (92)90135-J]

    Article  PubMed  CAS  Google Scholar 

  • Fenton, W., Hack, A., Willard, H., Gertler, A., Rosenberg, E., 1982. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch. Biochem. Biophys., 214(2):815–823. [doi:10.1016/0003-9861(82) 90088-1]

    Article  PubMed  CAS  Google Scholar 

  • Fenton, W., Hack, A., Helfgott, D., Rosenberg, E., 1984. Biogenesis of the mitochondrial enzyme methylmalonyl CoA mutase. Synthesis and processing of a precursor in a cell system and in cultures cells. J. Biol. Chem., 259(10): 6616–6621.

    PubMed  CAS  Google Scholar 

  • Flavin, M., Ortiz, P.J., Ochoa, S., 1955. Metabolism of propionic acid in animal tissues. Nature, 176(4487):823–826. [doi:10.1038/176823a0]

    Article  PubMed  CAS  Google Scholar 

  • Forage, R., Foster, M., 1979. Resolution of the coenzyme B12-independent dehydratases of Klebsiella sp. and Citrobacter freundii. Biochim. Biophys. Acta Enzymol., 569(2):249–258. [doi:10.1016/0005-2744(79)90060-3]

    CAS  Google Scholar 

  • Froese, D., Dobson, M., White, P., Wu, X., Padovani, D., Banerjee, R., Haller, T., Gerlt, A., Surette, G., Gravel, R., 2009. Sleeping beauty mutase (sbm) is expressed and interacts with ygfd in Escherichia coli. Microbiol. Res., 164(1):1–8. [doi:10.1016/j.micres.2008.08.006]

    Article  PubMed  CAS  Google Scholar 

  • Froese, D., Kochan, G., Muniz, J., Wu, X., Gileadi, C., Ugochukwu, E., Krysztofinska, E., Gravel, R., Oppermann, U., Yue, W., 2010. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation. J. Biol. Chem., 285(49):38204–38213. [doi:10.1074/jbc.M110.177717]

    Article  PubMed  CAS  Google Scholar 

  • Guest, J., Friedman, S., Woods, D., Smith, E., 1962. A methyl analogue of cobamide coenzyme in relation to methionine synthesis by bacteria. Nature, 195(4839):340–342. [doi:10.1038/195340a0]

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, D., Kramper, J., Mackay, M., Pickworth, J., Trueblood, K., White, J., 1956. Structure of vitamin B12. Nature, 178(4524):64–66. [doi:10.1038/178064a0]

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, P.A., Padovani, D., Labunska, T., Mahlstedt, S.A., Banerjee, R., Drennan, C.L., 2007. Crystal structure and mutagenesis of the metallochaperone MeaB: insight into the causes of methylmalonic aciduria. J. Biol. Chem., 282(43):31308–31316. [doi:10.1074/jbc.M704850200]

    Article  PubMed  CAS  Google Scholar 

  • Janata, J., Kogekar, N., Fenton, W., 1997. Expression and kinetic characterization of methylmalonyl CoA mutase from patients with the mut phenotype: evidence for naturally occuring interallelic complementation. Hum. Mol. Genet., 6(9):1457–1464. [doi:10.1093/hmg/6.9.1457]

    Article  PubMed  CAS  Google Scholar 

  • Jansen, R., Kalousek, F., Fenton, W., Rosenberg, E., Ledley, F., 1989. Cloning of full-length methylmalonyl CoA mutase from cDNA library using the polymerase chain reaction. Genomics, 4(2):198–205. [doi:10.1016/0888-7543(89) 90300-5]

    Article  PubMed  CAS  Google Scholar 

  • Kambo, A., Sharma, V., Casteel, D., Woods, V., Pilz, R., Boss, G., 2005. Nitric oxide inhibits mammalian methylmalonyl CoA mutase. J. Biol. Chem., 280(11):10073–10082. [doi:10.1074/jbc.M411842200]

    Article  PubMed  CAS  Google Scholar 

  • Katz, J., Chaikoff, I.L., 1955. The metabolism of propionate by rat liver slices and the formation of isosuccinic acid. J. Am. Chem. Soc., 77(9):2659–2660. [doi:10.1021/ja01614a105]

    Article  CAS  Google Scholar 

  • Korotkova, N., Lidstrom, M., 2004. MeaB is a component of the methylmalonyl CoA mutase complex required for protection of the enzyme from inactivation. J. Biol. Chem., 279(14):13652–13658. [doi:10.1074/jbc.M312852200]

    Article  PubMed  CAS  Google Scholar 

  • Korotkova, N., Chistoserdova, L., Kuksa, V., Lidstrom, M., 2002. Glyoxalate regeneration pathway in the methylotroph Methylobacterium extorquens AM1. J. Bacteriol., 184(6):1750–1758. [doi:10.1128/JB.184.6.1750-1758.2002]

    Article  PubMed  CAS  Google Scholar 

  • Kräutler, B., 2005. Vitamin B12: chemistry and biochemistry. Biochem. Soc. Trans., 33(Pt.4):806–810.

    PubMed  Google Scholar 

  • Kraütler, B., Fiebre, W., Ostermann, S., Fasching, M., Ongania, K., Gruber, K., Kratky, C., Mikl, C., Siebert, A., Diekert, G., 2003. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12. New type of a natural corrinoid. Helv. Chim. Acta, 86(11):3698–3716. [doi:10.1002/hlca.200390313]

    Article  Google Scholar 

  • Ledley, F., Lumetta, M., Nguyen, N., Kolhouse, F., Allen, R., 1988. Molecular cloning of L-methylmalonyl-CoA mutase: gene transfer and analysis of mut cell lines. PNAS, 85(10):3518–3521. [doi:10.1073/pnas.85.10.3518]

    Article  PubMed  CAS  Google Scholar 

  • Lee, A., Abeles, R., 1963. Purification and properties of diol dehydratase, an enzyme requiring a cobamide coenzyme. J. Biol. Chem., 238(7):2367–2373.

    PubMed  CAS  Google Scholar 

  • Lehninger, A., Nelson, D., Cox, M., 1993. Principles of Biochemistry. Worth Publishers, New York, p.492–495, 533–535.

    Google Scholar 

  • Lenhert, G., Hodgkin, D., 1961. Structure of the 5,6-dimethylbenzimidazolylcobamide coenzyme. Nature, 192(4806):937–938. [doi:10.1038/192937a0]

    Article  PubMed  CAS  Google Scholar 

  • Loferer, M., Webb, B., Grant, G., Liedl, K., 2003. Energetic and stereochemical effects of the protein environment on substrate: a theorical study of methylmalonyl CoA mutase. J. Am. Chem. Soc., 125(4):1072–1078. [doi:10.1021/ ja028906n]

    Article  PubMed  CAS  Google Scholar 

  • Mancia, F., Evans, P., 1998. Conformational changes on substrate binding to methylmalonyl CoA mutase and new insights into the free radical mechanism. Structure, 6(6): 711–720. [doi:10.1016/S0969-2126(98)00073-2]

    Article  PubMed  CAS  Google Scholar 

  • Mancia, F., Keep, N.H., Nakagawa, A., Leadlay, P.F., McSweeney, S., Rasmussen, B., Bösecke, P., Diat, O., Evans, P.R., 1996. How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 Å resolution. Structure, 4(3):339–350. [doi:10.1016/S0969-2126(96)00037-8]

    Article  PubMed  CAS  Google Scholar 

  • Mancia, F., Smiths, G., Evans, P., 1999. Crystal structure of substrate complexes of methylmalonyl-CoA mutase. Biochemistry, 38(25):7999–8005. [doi:10.1021/bi9903852]

    Article  PubMed  CAS  Google Scholar 

  • Minot, M., Murphy, W., 1926. Treatment of pernicious anemia by a special diet. JAMA, 87(7):470–476. [doi:10.1001/ jama.1926.02680070016005]

    Article  CAS  Google Scholar 

  • Mohamed, H., Zou, X., Banka, R., Brown, K., van Eldik, R., 2005. Kinetic and thermodynamic studies on ligand substitution reactions and base-on/base-off equilibria of cyanoimidazolylcobamide, a vitamin B12 analog with an imidazole axial nucleoside. Dalton Trans., 21(4):782–787. [doi:10.1039/B414092C]

    Google Scholar 

  • Nham, S., Wilkemeyer, M., Ledley, F., 1990. Structure of the human methylmalonyl CoA mutase (MUT) locus. Genomics, 8(4):710–716. [doi:10.1016/0888-7543(90) 90259-W]

    Article  PubMed  CAS  Google Scholar 

  • Padovani, D., Banerjee, R., 2006. Alternative pathways for radical dissipation in an active site mutant of B12 dependent Methylmalonyl-CoA mutase. Biochemistry, 45(9): 2951–2959. [doi:10.1021/bi051742d]

    Article  PubMed  CAS  Google Scholar 

  • Padovani, D., Banerjee, R., 2006. Assembly and protection of the radical enzyme, methylmalonyl-CoA mutase, by its chaperone. Biochemistry, 45(30):9300–9306. [doi:10. 1021/bi0604532]

    Article  PubMed  CAS  Google Scholar 

  • Padovani, D., Banerjee, R., 2009. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. PNAS, 106(51):21567–21572. [doi:10.1073/ pnas.0908106106]

    Article  PubMed  CAS  Google Scholar 

  • Padovani, D., Labunska, T., Banerjee, R., 2006. Energetics of interaction between the G-protein chaperone, MeaB, and B12-dependent methylmalonyl-CoA mutase. J. Biol. Chem., 281(26):17838–17844. [doi:10.1074/jbc.M600047200]

    Article  PubMed  CAS  Google Scholar 

  • Peters, H., Nefedov, M., Salsero, J., Pitt, J., Fowler, K., Gazeas, S., Kahler, S., Ioannou, P., 2003. A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality. J. Biol. Chem., 278(52):52909–52913. [doi:10. 1074/jbc.M310533200]

    Article  PubMed  CAS  Google Scholar 

  • Reeves, A., Brikun, I., Cernota, W., Leach, B., Gonzalez, M., Weber, M., 2006. Effects of methylmalonyl-CoA mutasa gene knockouts on erythromycin production in carbohydrate-base and oil based fementations of Saccharopolyspora erythraea. J. Ind. Microbiol. Biotechnol., 33(7): 600–609. [doi:10.1007/s10295-006-0094-3]

    Article  PubMed  CAS  Google Scholar 

  • Reitzer, R., Gruber, K., Jogl, G., Wagner, U.G., Bothe, H., Buckel, W., Kratky, C., 1999. Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B12-dependent enzyme provides new mechanistic insights. Structure, 7(8):891–902. [doi:10.1016/S0969-2126(99) 80116-6]

    Article  PubMed  CAS  Google Scholar 

  • Rickes, E., Brink, N., Koniuszy, F., Wood, T., Folkers, K., 1948. Crystalline Vitamin B12. Science, 107(2781):396–397. [doi:10.1126/science.107.2781.396]

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt, D., Fenton, W., 2001. Inherited Disorders of Folato and Cobalamin Transport Metabolism. In: Scriver, C., Beaudet, A.L., Sly, W., Valle, D. (Eds.), The Metabolic and Molecular Basis of Inherited Diseases. Mc Graw Hill, New York, p.3897–3923.

    Google Scholar 

  • Sintchak, D., Arjara, G., Kellogg, B., Stubbe, J., Drennan, C., 2002. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimmer. Nat. Struct. Biol., 9(4):293–300. [doi:10.1038/nsb774]

    Article  PubMed  CAS  Google Scholar 

  • Smith, E., Parker, L., 1948. Purification of anti-pernicious anaemia factor. Biochem. J., 43(1):viii–ix.

    PubMed  CAS  Google Scholar 

  • Somack, R., Costilow, R., 1973. Purification and properties of pyridoxal phosphate and coenzyme B12-dependent Dalpha-ornithine 5,4-aminomutase. Biochemistry, 12(14): 2597–2604. [doi:10.1021/bi00738a008]

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Iñiguez, T., García-Arellano, H., Trujillo-Roldán, M., Flores, M.E., 2011. Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem. Biophys. Res. Commun., 404(1):443–447. [doi:10.1016/j.bbrc.2010.11.141]

    Article  PubMed  Google Scholar 

  • Thomä, N.H., Leadlay, P.F., 1996. Homology modeling of human methylmalonyl-CoA mutase: a structural basis for point mutations causing methylmalonic aciduria. Prot. Sci., 5(9):1922–1927. [doi:10.1002/pro.5560050919]

    Article  Google Scholar 

  • Thomä, N.H., Evans, P.R., Leadlay, P.F., 2000. Protection of radical intermediates at the active site of adenosylcobalamin dependent methymalonyl CoA mutase. Biochemistry, 39(31):9213–9221. [doi:10.1021/bi0004302]

    Article  PubMed  Google Scholar 

  • Tobimatsu, T., Sakai, T., Hasida, Y., Mizoguchi, N., Miyoshi, S., Toraya, T., 1997. Heterologous expression, purification and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca. Arch. Biochem. Biophys., 347(1):132–140. [doi:10.1006/abbi.1997.0325]

    Article  PubMed  CAS  Google Scholar 

  • Toraya, T., 2000. Radical catalysis of B12 enzymes: structure, mechanism, inactivation and reactivation of diol and glycerol dehydratases. Cell. Mol. Life Sci., 57(1):106–127. [doi:10.1007/s000180050502]

    Article  PubMed  CAS  Google Scholar 

  • Toraya, T., Fukui, S., 1977. Immunochemical evidence for the difference between coenzyme-B12-dependent diol dehydratase and glycerol dehydratase. Eur. J. Biochem., 76(1): 285–289. [doi:10.1111/j.1432-1033.1977.tb11594.x]

    Article  PubMed  CAS  Google Scholar 

  • Toraya, T., Kuno, S., Fukui, S., 1980. Distribution of coenzyme B12-dependent diol dehydratase and glycerol dehydratase in selected genera of Enterobacteriaceae and Propionibacteriaceae. J. Bacteriol., 141(3):1439–1442.

    PubMed  CAS  Google Scholar 

  • Vlasie, M., Banerjee, R., 2003. Tyrosine 89 accelerates Co-carbon bond homolysis in methylmalonyl-CoA mutase. J. Am. Chem. Soc., 125(18):5431–5435. [doi:10. 1021/ja029420+]

    Article  PubMed  CAS  Google Scholar 

  • Vlasie, M., Banerjee, R., 2004. When a spectator turns killer: suicidal electron transfer from cobalamin in methylmalonyl CoA mutase. Biochemistry, 43(26):8410–8417. [doi:10.1021/bi036299q]

    Article  PubMed  CAS  Google Scholar 

  • Vlasie, M., Chowdhury, S., Banerjee, R., 2002. Importance of the histidine ligand to coenzyme B12 in the reaction catalyzed by methylmalonyl CoA mutase. J. Biol. Chem., 277(21):18523–18527. [doi:10.1074/jbc.M111809200]

    Article  PubMed  CAS  Google Scholar 

  • Wilcken, B., Wiley, V., Hammond, J., Carpenter, K., 2003. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med., 348(23): 2304–2312. [doi:10.1056/NEJMoa025225]

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi, M., Yunoki, M., Tobimatsu, T., Sato, H., Matsui, J., Dokiya, A., Iuchi, Y., Oe, K., Suto, K., Shibata, N., et al., 2002. The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol. Eur. J. Biochem., 269(18): 4484–4494. [doi:10.1046/j.1432-1033.2002.03151.x]

    Article  PubMed  CAS  Google Scholar 

  • Zerbe-Burkhardt, K., Ratnatilleke, A., Philippon, N., Birch, A., Leiser, A., Vrijbloed, J., Hess, D., Hunziker, P., Robinson, J., 1998. Cloning, sequencing, expression, and insertional inactivation of the gene for the large subunit of coenzyme B12-dependent isobutyryl-CoA mutase from Streptomyces cinnamonensis. J. Biol. Chem., 273(11):6508–6517. [doi:10.1074/jbc.273.11.6508]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tóshiko Takahashi-Iñiguez.

Additional information

Project (No. IN208411) partially supported by the PAPIIT-UNAM of Mexico

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi-Iñiguez, T., García-Hernandez, E., Arreguín-Espinosa, R. et al. Role of vitamin B12 on methylmalonyl-CoA mutase activity. J. Zhejiang Univ. Sci. B 13, 423–437 (2012). https://doi.org/10.1631/jzus.B1100329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100329

Key words

CLC number