Abstract
Vitamin B12 is an organometallic compound with important metabolic derivatives that act as cofactors of certain enzymes, which have been grouped into three subfamilies depending on their cofactors. Among them, methylmalonyl-CoA mutase (MCM) has been extensively studied. This enzyme catalyzes the reversible isomerization of L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (AdoCbl) as a cofactor participating in the generation of radicals that allow isomerization of the substrate. The crystal structure of MCM determined in Propionibacterium freudenreichii var. shermanii has helped to elucidate the role of this cofactor AdoCbl in the reaction to specify the mechanism by which radicals are generated from the coenzyme and to clarify the interactions between the enzyme, coenzyme, and substrate. The existence of human methylmalonic acidemia (MMA) due to the presence of mutations in MCM shows the importance of its role in metabolism. The recent crystallization of the human MCM has shown that despite being similar to the bacterial protein, there are significant differences in the structural organization of the two proteins. Recent studies have identified the involvement of an accessory protein called MMAA, which interacts with MCM to prevent MCM’s inactivation or acts as a chaperone to promote regeneration of inactivated enzyme. The interdisciplinary studies using this protein as a model in different organisms have helped to elucidate the mechanism of action of this isomerase, the impact of mutations at a functional level and their repercussion in the development and progression of MMA in humans. It is still necessary to study the mechanisms involved in more detail using new methods.
Similar content being viewed by others
References
Abend, A., Bandarian, V., Nitsche, R., Stupperich, E., Rétey, J., Reed, G., 1999. Ethanolamine ammonia-lyase has a ‘base-on’ binding mode for coenzyme B12. Arch. Biochem. Biophys., 370(1):138–141. [doi:10.1006/abbi.1999.1382]
Andrews, E., Jansen, R., Crane, M., Cholin, S., McDonell, D., Ledley, F., 1993. Expression of recombinant human methylmalonyl CoA mutase: in primary mut fibroblast and Saccharomyces cerevisiae. Biochem. Med. Metab. Biol., 50(2):135–144. [doi:10.1006/bmmb.1993.1055]
Banerjee, R., 2001. Cobalamin Coenzymes and Vitamin B12. eLS, John Wiley & Sons, Ltd. [doi:10.1038/npg.els.0000666]
Banerjee, R., Vlasie, M., 2002. Controlling the reactivity of radical intermediates by coenzyme B12 dependent methylmalonyl CoA mutase. Biochem. Soc. Transact., 30(4): 621–624. [doi:10.1042/bst0300621]
Barker, H., Weissbach, H., Smyth, R., 1958. A coenzyme containing pseudovitamin B12. PNAS, 44(11):1093–1097. [doi:10.1073/pnas.44.11.1093]
Berkovitch, F., Besad, E., Tang, K., Enns, E., Frey, P., Drenan C., 2004. A locking mechanism preventing radical damage in the absence of substrate, as revealed by the X-ray structure of lysine 5,6-aminomutase. PNAS, 101(45): 15870–15875. [doi:10.1073/pnas.0407074101]
Bobik, T.A., Rasche, M.E., 2001. Identification of the human methylmalonyl CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J. Biol. Chem., 276(40): 37194–37198. [doi:10.1074/jbc.M107232200]
Booker, S., Licht, S., Broderick, J., Stubbe, J., 1994. Coenzyme B12-dependent ribonucleotide reductase: evidence for the participation of five cysteine residues in ribonucleotide reduction. Biochemistry, 33(42):12676–12685. [doi:10.1021/bi00208a019]
Bradbeer, C., 1965. The clostridial fermentations of choline and ethanolamine. J. Biol. Chem., 240(12):4669–4674.
Brooks, A., Vlasie, M., Banerjee, R., Brunold, T., 2004. Spectroscopic and computational studies on the adenosylcobalamin dependent methylmalonyl-CoA mutase: evaluation of enzymatic contributions to Co-C bond activation in the Co3+ ground state. J. Am. Chem. Soc., 126(26): 8167–8180. [doi:10.1021/ja039114b]
Brooks, A., Vlasie, M., Banerjee, R., Brunold, T., 2005. Co-C bond activation in methylmalonyl-CoA mutase by estabilization of the post-homolysis product Co2+ cobalamin. J. Am. Chem. Soc., 127(47):16522–16528. [doi:10.1021/ ja0503736]
Buckel, W., Golding, B., 1996. Glutamate and 2-methyleneglutarate mutase: from microbial curiosities to paradigms for coenzyme B12-dependent enzymes. Chem. Soc. Rev., 5(25):329–337. [doi:10.1039/CS9962500329]
Cannata, J.B., Focesi, A., Mazumder, R., Warner, R., Ochoa, S., 1965. Metabolism of propionic acid in animal tissues: properties of mammalian methylmalonyl coenzyme A mutase. J. Biol. Chem., 240(8):3249–3257.
Chowdhury, S., Banerjee, R., 1999. Role of the dimethylbenzimidazole tail in the reaction catalyzed by coenzyme B12 dependent methylmalonyl-CoA mutase. Biochemistry, 38(46):15287–15294. [doi:10.1021/bi9914762]
Cracan, V., Banerjee, R., 2012. A novel coenzyme B12-dependent intercorversion of isovaleryl-CoA and pivalyl-CoA. J. Biol. Chem., 287(6):3723–3732. [doi:10.1074/jbc. M111.320051]
Cracan, V., Padovani, D., Banerjee, R., 2010. IcmF is a fusion between the radical B12 enzyme isobutyryl-CoA mutase and its G-protein chaperone. J. Biol. Chem., 285(1): 655–666. [doi:10.1074/jbc.M109.062182]
Dobson, M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Doré, C., Hudson, T., Rosenblatt, D., Gravel, R., 2002. Identification of the gene responsible for the cblA complementation group of vitamin B12 responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. PNAS, 99(24):15554–15559. [doi:10.1073/pnas.242614799]
Erb, T., Rétey, J., Fuchs, G., Alber, B., 2008. Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J. Biol. Chem., 283(47):32283–32293. [doi:10. 1074/jbc.M805527200]
Erfle, D., Clark, M., Nystrom, R., Johnson, C., 1964. Direct hydrogen transfer by methylmalonyl coenzyme A mutase. J. Biol. Chem., 239(6):1920–1924.
Faust, L., Babior, B., 1992. Overexpression, purification and some properties of the AdoCbl-dependent ethanolamine ammonia-lyase from Salmonella typhimurium. Arch. Biochem. Biophys., 294(1):50–54. [doi:10.1016/0003-9861 (92)90135-J]
Fenton, W., Hack, A., Willard, H., Gertler, A., Rosenberg, E., 1982. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch. Biochem. Biophys., 214(2):815–823. [doi:10.1016/0003-9861(82) 90088-1]
Fenton, W., Hack, A., Helfgott, D., Rosenberg, E., 1984. Biogenesis of the mitochondrial enzyme methylmalonyl CoA mutase. Synthesis and processing of a precursor in a cell system and in cultures cells. J. Biol. Chem., 259(10): 6616–6621.
Flavin, M., Ortiz, P.J., Ochoa, S., 1955. Metabolism of propionic acid in animal tissues. Nature, 176(4487):823–826. [doi:10.1038/176823a0]
Forage, R., Foster, M., 1979. Resolution of the coenzyme B12-independent dehydratases of Klebsiella sp. and Citrobacter freundii. Biochim. Biophys. Acta Enzymol., 569(2):249–258. [doi:10.1016/0005-2744(79)90060-3]
Froese, D., Dobson, M., White, P., Wu, X., Padovani, D., Banerjee, R., Haller, T., Gerlt, A., Surette, G., Gravel, R., 2009. Sleeping beauty mutase (sbm) is expressed and interacts with ygfd in Escherichia coli. Microbiol. Res., 164(1):1–8. [doi:10.1016/j.micres.2008.08.006]
Froese, D., Kochan, G., Muniz, J., Wu, X., Gileadi, C., Ugochukwu, E., Krysztofinska, E., Gravel, R., Oppermann, U., Yue, W., 2010. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation. J. Biol. Chem., 285(49):38204–38213. [doi:10.1074/jbc.M110.177717]
Guest, J., Friedman, S., Woods, D., Smith, E., 1962. A methyl analogue of cobamide coenzyme in relation to methionine synthesis by bacteria. Nature, 195(4839):340–342. [doi:10.1038/195340a0]
Hodgkin, D., Kramper, J., Mackay, M., Pickworth, J., Trueblood, K., White, J., 1956. Structure of vitamin B12. Nature, 178(4524):64–66. [doi:10.1038/178064a0]
Hubbard, P.A., Padovani, D., Labunska, T., Mahlstedt, S.A., Banerjee, R., Drennan, C.L., 2007. Crystal structure and mutagenesis of the metallochaperone MeaB: insight into the causes of methylmalonic aciduria. J. Biol. Chem., 282(43):31308–31316. [doi:10.1074/jbc.M704850200]
Janata, J., Kogekar, N., Fenton, W., 1997. Expression and kinetic characterization of methylmalonyl CoA mutase from patients with the mut − phenotype: evidence for naturally occuring interallelic complementation. Hum. Mol. Genet., 6(9):1457–1464. [doi:10.1093/hmg/6.9.1457]
Jansen, R., Kalousek, F., Fenton, W., Rosenberg, E., Ledley, F., 1989. Cloning of full-length methylmalonyl CoA mutase from cDNA library using the polymerase chain reaction. Genomics, 4(2):198–205. [doi:10.1016/0888-7543(89) 90300-5]
Kambo, A., Sharma, V., Casteel, D., Woods, V., Pilz, R., Boss, G., 2005. Nitric oxide inhibits mammalian methylmalonyl CoA mutase. J. Biol. Chem., 280(11):10073–10082. [doi:10.1074/jbc.M411842200]
Katz, J., Chaikoff, I.L., 1955. The metabolism of propionate by rat liver slices and the formation of isosuccinic acid. J. Am. Chem. Soc., 77(9):2659–2660. [doi:10.1021/ja01614a105]
Korotkova, N., Lidstrom, M., 2004. MeaB is a component of the methylmalonyl CoA mutase complex required for protection of the enzyme from inactivation. J. Biol. Chem., 279(14):13652–13658. [doi:10.1074/jbc.M312852200]
Korotkova, N., Chistoserdova, L., Kuksa, V., Lidstrom, M., 2002. Glyoxalate regeneration pathway in the methylotroph Methylobacterium extorquens AM1. J. Bacteriol., 184(6):1750–1758. [doi:10.1128/JB.184.6.1750-1758.2002]
Kräutler, B., 2005. Vitamin B12: chemistry and biochemistry. Biochem. Soc. Trans., 33(Pt.4):806–810.
Kraütler, B., Fiebre, W., Ostermann, S., Fasching, M., Ongania, K., Gruber, K., Kratky, C., Mikl, C., Siebert, A., Diekert, G., 2003. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12. New type of a natural corrinoid. Helv. Chim. Acta, 86(11):3698–3716. [doi:10.1002/hlca.200390313]
Ledley, F., Lumetta, M., Nguyen, N., Kolhouse, F., Allen, R., 1988. Molecular cloning of L-methylmalonyl-CoA mutase: gene transfer and analysis of mut cell lines. PNAS, 85(10):3518–3521. [doi:10.1073/pnas.85.10.3518]
Lee, A., Abeles, R., 1963. Purification and properties of diol dehydratase, an enzyme requiring a cobamide coenzyme. J. Biol. Chem., 238(7):2367–2373.
Lehninger, A., Nelson, D., Cox, M., 1993. Principles of Biochemistry. Worth Publishers, New York, p.492–495, 533–535.
Lenhert, G., Hodgkin, D., 1961. Structure of the 5,6-dimethylbenzimidazolylcobamide coenzyme. Nature, 192(4806):937–938. [doi:10.1038/192937a0]
Loferer, M., Webb, B., Grant, G., Liedl, K., 2003. Energetic and stereochemical effects of the protein environment on substrate: a theorical study of methylmalonyl CoA mutase. J. Am. Chem. Soc., 125(4):1072–1078. [doi:10.1021/ ja028906n]
Mancia, F., Evans, P., 1998. Conformational changes on substrate binding to methylmalonyl CoA mutase and new insights into the free radical mechanism. Structure, 6(6): 711–720. [doi:10.1016/S0969-2126(98)00073-2]
Mancia, F., Keep, N.H., Nakagawa, A., Leadlay, P.F., McSweeney, S., Rasmussen, B., Bösecke, P., Diat, O., Evans, P.R., 1996. How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 Å resolution. Structure, 4(3):339–350. [doi:10.1016/S0969-2126(96)00037-8]
Mancia, F., Smiths, G., Evans, P., 1999. Crystal structure of substrate complexes of methylmalonyl-CoA mutase. Biochemistry, 38(25):7999–8005. [doi:10.1021/bi9903852]
Minot, M., Murphy, W., 1926. Treatment of pernicious anemia by a special diet. JAMA, 87(7):470–476. [doi:10.1001/ jama.1926.02680070016005]
Mohamed, H., Zou, X., Banka, R., Brown, K., van Eldik, R., 2005. Kinetic and thermodynamic studies on ligand substitution reactions and base-on/base-off equilibria of cyanoimidazolylcobamide, a vitamin B12 analog with an imidazole axial nucleoside. Dalton Trans., 21(4):782–787. [doi:10.1039/B414092C]
Nham, S., Wilkemeyer, M., Ledley, F., 1990. Structure of the human methylmalonyl CoA mutase (MUT) locus. Genomics, 8(4):710–716. [doi:10.1016/0888-7543(90) 90259-W]
Padovani, D., Banerjee, R., 2006. Alternative pathways for radical dissipation in an active site mutant of B12 dependent Methylmalonyl-CoA mutase. Biochemistry, 45(9): 2951–2959. [doi:10.1021/bi051742d]
Padovani, D., Banerjee, R., 2006. Assembly and protection of the radical enzyme, methylmalonyl-CoA mutase, by its chaperone. Biochemistry, 45(30):9300–9306. [doi:10. 1021/bi0604532]
Padovani, D., Banerjee, R., 2009. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. PNAS, 106(51):21567–21572. [doi:10.1073/ pnas.0908106106]
Padovani, D., Labunska, T., Banerjee, R., 2006. Energetics of interaction between the G-protein chaperone, MeaB, and B12-dependent methylmalonyl-CoA mutase. J. Biol. Chem., 281(26):17838–17844. [doi:10.1074/jbc.M600047200]
Peters, H., Nefedov, M., Salsero, J., Pitt, J., Fowler, K., Gazeas, S., Kahler, S., Ioannou, P., 2003. A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality. J. Biol. Chem., 278(52):52909–52913. [doi:10. 1074/jbc.M310533200]
Reeves, A., Brikun, I., Cernota, W., Leach, B., Gonzalez, M., Weber, M., 2006. Effects of methylmalonyl-CoA mutasa gene knockouts on erythromycin production in carbohydrate-base and oil based fementations of Saccharopolyspora erythraea. J. Ind. Microbiol. Biotechnol., 33(7): 600–609. [doi:10.1007/s10295-006-0094-3]
Reitzer, R., Gruber, K., Jogl, G., Wagner, U.G., Bothe, H., Buckel, W., Kratky, C., 1999. Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B12-dependent enzyme provides new mechanistic insights. Structure, 7(8):891–902. [doi:10.1016/S0969-2126(99) 80116-6]
Rickes, E., Brink, N., Koniuszy, F., Wood, T., Folkers, K., 1948. Crystalline Vitamin B12. Science, 107(2781):396–397. [doi:10.1126/science.107.2781.396]
Rosenblatt, D., Fenton, W., 2001. Inherited Disorders of Folato and Cobalamin Transport Metabolism. In: Scriver, C., Beaudet, A.L., Sly, W., Valle, D. (Eds.), The Metabolic and Molecular Basis of Inherited Diseases. Mc Graw Hill, New York, p.3897–3923.
Sintchak, D., Arjara, G., Kellogg, B., Stubbe, J., Drennan, C., 2002. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimmer. Nat. Struct. Biol., 9(4):293–300. [doi:10.1038/nsb774]
Smith, E., Parker, L., 1948. Purification of anti-pernicious anaemia factor. Biochem. J., 43(1):viii–ix.
Somack, R., Costilow, R., 1973. Purification and properties of pyridoxal phosphate and coenzyme B12-dependent Dalpha-ornithine 5,4-aminomutase. Biochemistry, 12(14): 2597–2604. [doi:10.1021/bi00738a008]
Takahashi-Iñiguez, T., García-Arellano, H., Trujillo-Roldán, M., Flores, M.E., 2011. Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem. Biophys. Res. Commun., 404(1):443–447. [doi:10.1016/j.bbrc.2010.11.141]
Thomä, N.H., Leadlay, P.F., 1996. Homology modeling of human methylmalonyl-CoA mutase: a structural basis for point mutations causing methylmalonic aciduria. Prot. Sci., 5(9):1922–1927. [doi:10.1002/pro.5560050919]
Thomä, N.H., Evans, P.R., Leadlay, P.F., 2000. Protection of radical intermediates at the active site of adenosylcobalamin dependent methymalonyl CoA mutase. Biochemistry, 39(31):9213–9221. [doi:10.1021/bi0004302]
Tobimatsu, T., Sakai, T., Hasida, Y., Mizoguchi, N., Miyoshi, S., Toraya, T., 1997. Heterologous expression, purification and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca. Arch. Biochem. Biophys., 347(1):132–140. [doi:10.1006/abbi.1997.0325]
Toraya, T., 2000. Radical catalysis of B12 enzymes: structure, mechanism, inactivation and reactivation of diol and glycerol dehydratases. Cell. Mol. Life Sci., 57(1):106–127. [doi:10.1007/s000180050502]
Toraya, T., Fukui, S., 1977. Immunochemical evidence for the difference between coenzyme-B12-dependent diol dehydratase and glycerol dehydratase. Eur. J. Biochem., 76(1): 285–289. [doi:10.1111/j.1432-1033.1977.tb11594.x]
Toraya, T., Kuno, S., Fukui, S., 1980. Distribution of coenzyme B12-dependent diol dehydratase and glycerol dehydratase in selected genera of Enterobacteriaceae and Propionibacteriaceae. J. Bacteriol., 141(3):1439–1442.
Vlasie, M., Banerjee, R., 2003. Tyrosine 89 accelerates Co-carbon bond homolysis in methylmalonyl-CoA mutase. J. Am. Chem. Soc., 125(18):5431–5435. [doi:10. 1021/ja029420+]
Vlasie, M., Banerjee, R., 2004. When a spectator turns killer: suicidal electron transfer from cobalamin in methylmalonyl CoA mutase. Biochemistry, 43(26):8410–8417. [doi:10.1021/bi036299q]
Vlasie, M., Chowdhury, S., Banerjee, R., 2002. Importance of the histidine ligand to coenzyme B12 in the reaction catalyzed by methylmalonyl CoA mutase. J. Biol. Chem., 277(21):18523–18527. [doi:10.1074/jbc.M111809200]
Wilcken, B., Wiley, V., Hammond, J., Carpenter, K., 2003. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med., 348(23): 2304–2312. [doi:10.1056/NEJMoa025225]
Yamanishi, M., Yunoki, M., Tobimatsu, T., Sato, H., Matsui, J., Dokiya, A., Iuchi, Y., Oe, K., Suto, K., Shibata, N., et al., 2002. The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol. Eur. J. Biochem., 269(18): 4484–4494. [doi:10.1046/j.1432-1033.2002.03151.x]
Zerbe-Burkhardt, K., Ratnatilleke, A., Philippon, N., Birch, A., Leiser, A., Vrijbloed, J., Hess, D., Hunziker, P., Robinson, J., 1998. Cloning, sequencing, expression, and insertional inactivation of the gene for the large subunit of coenzyme B12-dependent isobutyryl-CoA mutase from Streptomyces cinnamonensis. J. Biol. Chem., 273(11):6508–6517. [doi:10.1074/jbc.273.11.6508]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project (No. IN208411) partially supported by the PAPIIT-UNAM of Mexico
Rights and permissions
About this article
Cite this article
Takahashi-Iñiguez, T., García-Hernandez, E., Arreguín-Espinosa, R. et al. Role of vitamin B12 on methylmalonyl-CoA mutase activity. J. Zhejiang Univ. Sci. B 13, 423–437 (2012). https://doi.org/10.1631/jzus.B1100329
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.B1100329