Abstract
Cancer cells undergo substantial metabolic alterations to sustain increased energy supply and uncontrolled proliferation. As an essential trace element, iron is vital for many biological processes. Evidence has revealed that cancer cells deploy various mechanisms to elevate the cellular iron concentration to accelerate proliferation. Ferroptosis, a form of cell death caused by iron-catalyzed excessive peroxidation of polyunsaturated fatty acids (PUFAs), is a promising therapeutic target for therapy-resistant cancers. Previous studies have reported that long noncoding RNA (lncRNA) is a group of critical regulators involved in modulating cell metabolism, proliferation, apoptosis, and ferroptosis. In this review, we summarize the associations among iron metabolism, ferroptosis, and ferroptosis-related lncRNA in tumorigenesis. This information will help deepen understanding of the role of lncRNA in iron metabolism and raise the possibility of targeting lncRNA and ferroptosis in cancer combination therapy.
概要
代谢重编程是肿瘤标志性事件之一,癌细胞通过代谢重编程满足自身能量供应以及无限增殖。铁作为生命必要微量元素之一,对多种生物学过程包括DNA合成和修复、细胞呼吸、氧气运输、脂质氧化、信号转导等过程至关重要。研究表明,癌细胞通过多种机制增加细胞内铁离子浓度以促进细胞增殖。铁死亡是一种由铁催化的多不饱和脂肪酸过氧化引起的细胞死亡形式,是治疗耐药性肿瘤的潜在治疗靶点。长链非编码RNA(lncRNA)作为一种新型调控元件参与调节细胞代谢、增殖、凋亡和铁死亡等多种细胞过程。在本综述中,我们总结了铁代谢、铁死亡和lncRNA在肿瘤发生中的关系。深入探讨lncRNA在肿瘤铁死亡中的作用,将为联合靶向lncRNA和铁死亡相关分子在肿瘤治疗中提供新的策略和视角。
Similar content being viewed by others
References
Alkhateeb AA, Han B, Connor JR, 2013. Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macro-phages. Breast Cancer Res Treat, 137(3):733–744. https://doi.org/10.1007/s10549-012-2405-x
Alvarez SW, Sviderskiy VO, Terzi EM, et al., 2017. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 551(7682):639–643. https://doi.org/10.1038/nature24637
Barnes JL, Zubair M, John K, et al., 2018. Carcinogens and DNA damage. Biochem Soc Trans, 46(5): 1213–1224. https://doi.org/10.1042/BST20180519
Bell RJA, Rube HT, Kreig A, et al., 2015. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science, 348(6238): 1036–1039. https://doi.org/10.1126/science.aab0015
Berger T, Cheung CC, Elia AJ, et al., 2010. Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci USA, 107(7):2995–3000. https://doi.org/10.1073/pnas.1000101107
Berkers CR, Maddocks ODK, Cheung EC, et al., 2013. Metabolic regulation by p53 family members. Cell Metab, 18(5):617–633. https://doi.org/10.1016/j.cmet.2013.06.019
Billesbølle CB, Azumaya CM, Kretsch RC, et al., 2020. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature, 586(7831):807–811. https://doi.org/10.1038/s41586-020-2668-z
Bogdan AR, Miyazawa M, Hashimoto K, et al., 2016. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci, 41(3):274–286. https://doi.org/10.1016/j.tibs.2015.11.012
Brigelius-Flohé R, Maiorino M, 2013. Glutathione peroxidases. Biochim Biophys Acta (BBA)—Gen Subj, 1830(5):3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020
Brookes MJ, Hughes S, Turner FE, et al., 2006. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut, 55(10):1449–1460. https://doi.org/10.1136/gut.2006.094060
Callens C, Moura IC, Lepelletier Y, et al., 2008. Recent advances in adult T-cell leukemia therapy: focus on a new anti-transferrin receptor monoclonal antibody. Leukemia, 22(1):42–48. https://doi.org/10.1038/sj.leu.2404958
Carrieri C, Cimatti L, Biagioli M, et al., 2012. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 491(7424):454–457. https://doi.org/10.1038/nature11508
Challita-Eid PM, Morrison K, Etessami S, et al., 2007. Monoclonal antibodies to six-transmembrane epithelial antigen of the prostate-1 inhibit intercellular communication in vitro and growth of human tumor xenografts in vivo. Cancer Res, 67(12):5798–5805. https://doi.org/10.1158/0008-5472.CAN-06-3849
Chekhun VF, Lukyanova NY, Burlaka AP, et al., 2013. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol, 43(5): 1481–1486. https://doi.org/10.3892/ijo.2013.2063
Chen DL, Tavana O, Chu B, et al., 2017. NRF2 is a major target of ARF in p53-independent tumor suppression. Mol Cell, 68(1):224–232.e4. https://doi.org/10.1016/j.molcel.2017.09.009
Chen PH, Wu JL, Ding CKC, et al., 2020. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ, 27(3):1008–1022. https://doi.org/10.1038/s41418-019-0393-7
Chen W, Paradkar PN, Li LT, et al., 2009. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc Natl Acad Sci USA, 106(38):16263–16268. https://doi.org/10.1073/pnas.0904519106
Chen X, Yu CH, Kang R, et al., 2021. Cellular degradation systems in ferroptosis. Cell Death Differ, 28(4): 1135–1148. https://doi.org/10.1038/s41418-020-00728-1
Chen ZA, Tian H, Yao DM, et al., 2021. Identification of a ferroptosis-related signature model including mRNAs and lncRNAs for predicting prognosis and immune activity in hepatocellular carcinoma. Front Oncol, 11:738477. https://doi.org/10.3389/fonc.2021.738477
Cheng GC, Sun XQ, Wang JL, et al., 2014. HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Cancer Res, 74(3):862–872. https://doi.org/10.1158/0008-5472.CAN-13-2420
Chi YD, Remsik J, Kiseliovas V, et al., 2020. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science, 369(6501):276–282. https://doi.org/10.1126/science.aaz2193
Chu B, Kon N, Chen DL, et al., 2019. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol, 21(5):579–591. https://doi.org/10.1038/s41556-019-0305-6
Cinelli MA, Do HT, Miley GP, et al., 2020. Inducible nitric oxide synthase: regulation, structure, and inhibition. Med Res Rev, 40(1):158–189. https://doi.org/10.1002/med.21599
Conrad M, Pratt DA, 2019. The chemical basis of ferroptosis. Nat Chem Biol, 15(12):1137–1147. https://doi.org/10.1038/s41589-019-0408-1
Crielaard BJ, Lammers T, Rivella S, 2017. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov, 16(6):400–423. https://doi.org/10.1038/nrd.2016.248
Daniels TR, Bernabeu E, Rodríguez JA, et al., 2012. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta (BBA)—Gen Subj, 1820(3):291–317. https://doi.org/10.1016/j.bbagen.2011.07.016
Dixon SJ, Stockwell BR, 2014. The role of iron and reactive oxygen species in cell death. Nat Chem Biol, 10(1):9–17. https://doi.org/10.1038/nchembio.1416
Dixon SJ, Lemberg KM, Lamprecht MR, et al., 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
Dixon SJ, Winter GE, Musavi LS, et al., 2015. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol, 10(7): 1604–1609. https://doi.org/10.1021/acschembio.5b00245
Dodson M, Castro-Portuguez R, Zhang DD, 2019. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol, 23:101107. https://doi.org/10.1016/j.redox.2019.101107
Doll S, Proneth B, Tyurina YY, et al., 2017. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 13(1):91–98. https://doi.org/10.1038/nchembio.2239
dos Santos MCF, Anderson CP, Neschen S, et al., 2020. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun, 11:296. https://doi.org/10.1038/s41467-019-14004-5
Drakesmith H, Nemeth E, Ganz T, 2015. Ironing out ferroportin. Cell Metab, 22(5):777–787. https://doi.org/10.1016/j.cmet.2015.09.006
Du J, Zhou Y, Li YC, et al., 2020. Identification of Frataxin as a regulator of ferroptosis. Redox Biol, 32:101483. https://doi.org/10.1016/j.redox.2020.101483
Dufrusine B, di Francesco A, Oddi S, et al., 2019. Iron-dependent trafficking of 5-lipoxygenase and impact on human macro-phage activation. Front Immunol, 10:1347. https://doi.org/10.3389/fimmu.2019.01347
Feng HZ, Schorpp K, Jin J, et al., 2020. Transferrin receptor is a specific ferroptosis marker. Cell Rep, 30(10):3411–3423.e7. https://doi.org/10.1016/j.celrep.2020.02.049
Fox AH, Nakagawa S, Hirose T, et al., 2018. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci, 43(2): 124–135. https://doi.org/10.1016/j.tibs.2017.12.001
Gai CC, Liu CL, Wu XH, et al., 2020. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Discov, 11 (9):751. https://doi.org/10.1038/s41419-020-02939-3
Gao MH, Monian P, Quadri N, et al., 2015. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2): 298–308. https://doi.org/10.1016/j.molcel.2015.06.011
Gao MH, Monian P, Pan QH, et al., 2016. Ferroptosis is an autophagic cell death process. Cell Res 26(9):1021–1032. https://doi.org/10.1038/cr.2016.95
Gao MH, Yi JM, Zhu JJ, et al., 2019. Role of mitochondria in ferroptosis. Mol Cell 73(2):354–363.e3. https://doi.org/10.1016/j.molcel.2018.10.042
Gari K, León Ortiz AM, Borel V, et al., 2012. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science, 337(6091):243–245. https://doi.org/10.1126/science.1219664
Goldberg AV, Molik S, Tsaousis AD, et al. 2008. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature, 452(7187):624–628. https://doi.org/10.1038/nature06606
Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, et al. 2017. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor micro-environment. Cancer Res, 77(10):2647–2660. https://doi.org/10.1158/0008-5472.CAN-16-1986
Gozzelino R, Jeney V, Soares MP, 2010. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol, 50:323–354. https://doi.org/10.1146/annurev.pharmtox.010909.105600
Gu ZM, Wang H, Xia JL, et al., 2015. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res, 75(11):2211–2221. https://doi.org/10.1158/0008-5472.CAN-14-3804
Guo CJ, Ma XK, Xing YH, et al. 2020. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell, 181(3):621–636.e22. https://doi.org/10.1016/j.cell.2020.03.006
Hangauer MJ, Viswanathan VS, Ryan MJ, et al., 2017. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 551(7679):247–250. https://doi.org/10.1038/nature24297
Hassannia B, Wiernicki B, Ingold I, et al., 2018. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest, 128(8):3341–3355. https://doi.org/10.1172/JCI99032
Hassannia B, Vandenabeele P, Vanden Berghe T, 2019. Targeting ferroptosis to iron out cancer. Cancer Cell 35(6): 830–849. https://doi.org/10.1016/j.ccell.2019.04.002
Hayano M, Yang WS, Corn CK, et al., 2016. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ, 23(2):270–278. https://doi.org/10.1038/cdd.2015.93
Hayes JD, Dinkova-Kostova AT, 2017. Epigenetic control of NRF2-directed cellular antioxidant status in dictating life-death decisions. Mol Cell 68(1):5–7. https://doi.org/10.1016/j.molcel.2017.09.023
Hentze MW, Muckenthaler MU, Galy B, et al., 2010. Two to tango: regulation of mammalian iron metabolism. Cell 142(1):24–38. https://doi.org/10.1016/j.cell.2010.06.028
Horniblow RD, Bedford M, Hollingworth R, et al. 2017. BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis. Cancer Sci, 108(6):1135–1143. https://doi.org/10.1111/cas.13234
Hou W, Xie YC, Song XX, et al., 2016. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8): 1425–1428. https://doi.org/10.1080/15548627.2016.1187366
Hung CL, Wang LY, Yu YL, et al., 2014. A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA, 111(52):18697–18702. https://doi.org/10.1073/pnas.1415669112
Jiang L, Kon N, Li TY, et al., 2015. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. https://doi.org/10.1038/nature14344
Jiang XJ, Stockwell BR, Conrad M, 2021. Ferroptosis: mechanisms biology and role in disease. Nat Rev Mol Cell Biol, 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8
Johnsen KB, Burkhart A Thomsen LB, et al. 2019. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol, 181:101665. https://doi.org/10.1016/j.pneurobio.2019.101665
Jones DT, Trowbridge IS, Harris AL, 2006. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate. Cancer Res, 66(5):2749–2756. https://doi.org/10.1158/0008-5472.CAN-05-3857
Junttila MR, Evan GI, 2009. p53—a Jack of all trades but master of none. Nat Rev Cancer, 9(11):821–829. https://doi.org/10.1038/nrc2728
Kagan VE, Mao GW, Qu F, et al., 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol, 13(1):81–90. https://doi.org/10.1038/nchembio.2238
Kastenhuber ER, Lowe SW, 2017. Putting p53 in context. Cell, 170(6):1062–1078. https://doi.org/10.1016/j.cell.2017.08.028
Keel SB, Doty RT, Yang ZT, et al., 2008. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science, 319(5864):825–828. https://doi.org/10.1126/science.1151133
Khan MA, Walden WE, Goss DJ, et al., 2009. Direct Fe2+ sensing by iron-responsive messenger RNA-repressor complexes weakens binding. J Biol Chem, 284(44):30122–30128. https://doi.org/10.1074/jbc.M109.041061
Kobayashi H, Nagato T, Sato K, et al., 2007. Recognition of prostate and melanoma tumor cells by six-transmembrane epithelial antigen of prostate-specific helper T lymphocytes in a human leukocyte antigen class II-restricted manner. Cancer Res, 67(11):5498–5504. https://doi.org/10.1158/0008-5472.CAN-07-0304
Koppula P, Zhang YL, Zhuang L, et al., 2018. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond), 38(1): 1–13. https://doi.org/10.1186/s40880-018-0288-x
Korolnek T, Hamza I, 2015. Macrophages and iron trafficking at the birth and death of red cells. Blood, 125(19): 2893–2897. https://doi.org/10.1182/blood-2014-12-567776
Leng XH, Ding T, Lin H, et al., 2009. Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res, 69(22):8579–8584. https://doi.org/10.1158/0008-5472.CAN-09-1934
Li DS, Li YS, 2020. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther, 5:108. https://doi.org/10.1038/s41392-020-00216-5
Li QQ, Li Q, Jia JN, et al., 2018. 12/15 lipoxygenase: a crucial enzyme in diverse types of cell death. Neurochem Int, 118:34–41. https://doi.org/10.1016/j.neuint.2018.04.002
Li RH, Tian T, Ge QW, et al., 2021. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling. Cell Res, 31(10):1088–1105. https://doi.org/10.1038/s41422-021-00530-9
Li YJ, Tan Z, Zhang YH, et al., 2021. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science, 373(6555):662–673. https://doi.org/10.1126/science.aba4991
Lill R, Freibert SA, 2020. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu Rev Biochem, 89:471–499. https://doi.org/10.1146/annurev-biochem-013118-111540
Lin AF, Li CL, Xing Z, et al., 2016. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol, 18(2):213–224. https://doi.org/10.1038/ncb3295
Lin AF, Hu QS, Li CL, et al., 2017. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol, 19(3): 238–251. https://doi.org/10.1038/ncb3473
Lin CR, Yang LQ, 2018. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol, 28(4):287–301. https://doi.org/10.1016/j.tcb.2017.11.008
Linehan WM, Rouault TA, 2013. Molecular pathways: fumarate hydratase-deficient kidney cancer—targeting the Warburg effect in cancer. Clin Cancer Res, 19(13):3345–3352. https://doi.org/10.1158/1078-0432.CCR-13-0304
Liu J, Liu ZX, Wu QN, et al., 2020. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic re-programming. Nat Commun, 11:1507. https://doi.org/10.1038/s41467-020-15112-3
Liu JH, Gao L, Zhan N, et al., 2020. Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J Exp Clin Cancer Res, 39:137. https://doi.org/10.1186/s13046-020-01641-8
Liu JY, Xia XJ, Huang P, 2020. xCT: a critical molecule that links cancer metabolism to redox signaling. Mol Ther, 28(11):2358–2366. https://doi.org/10.1016/j.ymthe.2020.08.021
Liu SJ, Dang HX, Lim DA, et al., 2021. Long noncoding RNAs in cancer metastasis. Nat Rev Cancer, 21(7):446–460. https://doi.org/10.1038/s41568-021-00353-1
Liu XR, Liang YJ, Song RP, et al., 2018. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer, 17:90. https://doi.org/10.1186/s12943-018-0838-5
Lo M, Wang YZ, Gout PW, 2008. The xc− cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol, 215(3):593–602. https://doi.org/10.1002/jcp.21366
Lu L, Liu LP, Zhao QQ, et al., 2021. Identification of a ferroptosis-related lncRNA signature as a novel prognosis model for lung adenocarcinoma. Front Oncol, 11:675545. https://doi.org/10.3389/fonc.2021.675545
Luo WJ, Wang J, Xu WH, et al., 2021. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Discov, 12(11): 1043. https://doi.org/10.1038/s41419-021-04296-1
Ma J, Haldar S, Khan MA, et al., 2012. Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation. Proc Natl Acad Sci USA, 109(22):8417–8422. https://doi.org/10.1073/pnas.1120045109
Ma Q, 2013. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 53:401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
Malakar P, Stein I, Saragovi A, et al., 2019. Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Cancer Res, 79(10):2480–2493. https://doi.org/10.1158/0008-5472.CAN-18-1432
Mancias JD, Wang XX, Gygi SP, et al., 2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature, 509(7498):105–109. https://doi.org/10.1038/nature13148
Mao C, Wang X, Liu YT, et al., 2018. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res, 78(13):3484–3496. https://doi.org/10.1158/0008-5472.CAN-17-3454
Meyron-Holtz EG, Ghosh MC, Rouault TA, 2004. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science, 306(5704):2087–2090. https://doi.org/10.1126/science.1103786
Miller LD, Coffman LG, Chou JW, et al., 2011. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res, 71(21):6728–6737. https://doi.org/10.1158/0008-5472.CAN-11-1870
Muckenthaler MU, Galy B, Hentze MW, 2008. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr, 28:197–213. https://doi.org/10.1146/annurev.nutr.28.061807.155521
Muckenthaler MU, Rivella S, Hentze MW, et al., 2017. A red carpet for iron metabolism. Cell, 168(3):344–361. https://doi.org/10.1016/j.cell.2016.12.034
Muto Y, Moroishi T, Ichihara K, et al., 2019. Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis. J Exp Med, 216(4):950–965. https://doi.org/10.1084/jem.20180900
Netz DJA, Stith CM, Stümpfig M, et al., 2011. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol, 8(1): 125–132. https://doi.org/10.1038/nchembio.721
Ohgami RS, Campagna DR, Greer EL, et al., 2005. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet, 37(11): 1264–1269. https://doi.org/10.1038/ng1658
Okazaki F, Matsunaga N, Okazaki H, et al., 2010. Circadian rhythm of transferrin receptor 1 gene expression controlled by c-Myc in colon cancer-bearing mice. Cancer Res, 70(15):6238–6246. https://doi.org/10.1158/0008-5472.CAN-10-0184
Osborne NJ, Gurrin LC, Allen KJ, et al., 2010. HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology, 51(4):1311–1318. https://doi.org/10.1002/hep.23448
Parker JL, Deme JC, Kolokouris D, et al., 2021. Molecular basis for redox control by the human cystine/glutamate antiporter system xc−. Nat Commun, 12:7147. https://doi.org/10.1038/s41467-021-27414-1
Pasricha SR, Tye-Din J, Muckenthaler MU, et al., 2021. Iron deficiency. Lancet, 397(10270):233–248. https://doi.org/10.1016/S0140-6736(20)32594-0
Patra S, Barondeau DP, 2019. Mechanism of activation of the human cysteine desulfurase complex by frataxin. Proc Natl Acad Sci USA, 116(39):19421–19430. https://doi.org/10.1073/pnas.1909535116
Pinnix ZK, Miller LD, Wang W, et al., 2010. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med, 2(43):43ra56. https://doi.org/10.1126/scisignal.3001127
Poli M, Asperti M, Ruzzenenti P, et al., 2014. Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol, 5:86. https://doi.org/10.3389/fphar.2014.00086
Qi WC, Li ZH, Xia LJ, et al., 2019. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep, 9:16185. https://doi.org/10.1038/s41598-019-52837-8
Qin X, Zhang J, Wang B, et al., 2021. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy, 17(12):4266–4285. https://doi.org/10.1080/15548627.2021.1911016
Radulescu S, Brookes MJ, Salgueiro P, et al., 2012. Luminal iron levels govern intestinal tumorigenesis after Apc loss in vivo. Cell Rep, 2(2):270–282. https://doi.org/10.1016/j.celrep.2012.07.003
Rinn JL, Chang HY, 2012. Genome regulation by long non-coding RNAs. Annu Rev Biochem, 81:145–166. https://doi.org/10.1146/annurev-biochem-051410-092902
Roh JL, Kim EH, Jang H, et al., 2017. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol, 11: 254–262. https://doi.org/10.1016/j.redox.2016.12.010
Rouault TA, 2013. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci, 14(8): 551–564. https://doi.org/10.1038/nrn3453
Salahudeen AA, Thompson JW, Ruiz JC, et al., 2009. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science, 326(5953): 722–726. https://doi.org/10.1126/science.1176326
Sang LJ, Ju HQ, Liu GP, et al., 2018. LncRNA CamK-A regulates Ca2+-signaling-mediated tumor microenvironment remodeling. Mol Cell, 72(1):71–83.e7. https://doi.org/10.1016/j.molcel.2018.08.014
Sang LJ, Ju HQ, Yang ZZ, et al., 2021. Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nat Metab, 3(1):90–106. https://doi.org/10.1038/s42255-020-00325-z
Sankaran VG, Ulirsch JC, Tchaikovskii V, et al., 2015. X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation. J Clin Invest, 125(4):1665–1669. https://doi.org/10.1172/JCI78619
Saxena N, Maio N, Crooks DR, et al., 2016. SDHB-deficient cancers: the role of mutations that impair iron sulfur cluster delivery. J Natl Cancer Inst, 108(1):djv287. https://doi.org/10.1093/jnci/djv287
Schmitt AM, Chang HY, 2016. Long noncoding RNAs in cancer pathways. Cancer Cell, 29(4):452–463. https://doi.org/10.1016/j.ccell.2016.03.010
Schonberg DL, Miller TE, Wu QL, et al., 2015. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell, 28(4):441–455. https://doi.org/10.1016/j.ccell.2015.09.002
Shaw GC, Cope JJ, Li LT, et al., 2006. Mitoferrin is essential for erythroid iron assimilation. Nature, 440(7080):96–100. https://doi.org/10.1038/nature04512
Shi H, Gu YC, Yang J, et al., 2008. Lipocalin 2 promotes lung metastasis of murine breast cancer cells. J Exp Clin Cancer Res, 27:83. https://doi.org/10.1186/1756-9966-27-83
Shi QF, Li YD, Li SY, et al., 2020. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat Commun, 11:5513. https://doi.org/10.1038/s41467-020-19349-w
Shimizu T, Lengalova A, Martínek V, et al., 2019. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev, 48(24): 5624–5657. https://doi.org/10.1039/c9cs00268e
Stehling O, Vashisht AA, Mascarenhas J, et al., 2012. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science, 337(6091): 195–199. https://doi.org/10.1126/science.1219723
Stehling O, Mascarenhas J, Vashisht AA, et al., 2013. Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nucleariron-sulfurproteins. Cell Metab, 18(2): 187–198. https://doi.org/10.1016/j.cmet.2013.06.015
Stockwell BR, Friedmann Angeli JP, Bayir H, et al., 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021
Stockwell BR, Jiang XJ, Gu W, 2020. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol, 30(6):478–490. https://doi.org/10.1016/j.tcb.2020.02.009
Sun H, Huang ZH, Sheng WQ, et al., 2018. Emerging roles of long non-coding RNAs in tumor metabolism. J Hematol Oncol, 11:106. https://doi.org/10.1186/s13045-018-0648-7
Sun M, Nie FQ, Wang YF, et al., 2016. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res, 76(21):6299–6310. https://doi.org/10.1158/0008-5472.CAN-16-0356
Tan YT, Lin JF, Li T, et al., 2021. LncRNA-mediated post-translational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond), 41(2): 109–120. https://doi.org/10.1002/cac2.12108
Tang Z, Jiang WL, Mao M, et al., 2021. Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin Transl Med, 11(4):e390. https://doi.org/10.1002/ctm2.390
Tarín C, Fernandez-Garcia CE, Burillo E, et al., 2016. Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice. Cardiovasc Res, 111(3): 262–273. https://doi.org/10.1093/cvr/cvw112
Tesfay L, Clausen KA, Kim JW, et al., 2015. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res, 75(11):2254–2263. https://doi.org/10.1158/0008-5472.CAN-14-2465
To-Figueras J, Ducamp S, Clayton J, et al., 2011. ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria. Blood, 118(6):1443–1451. https://doi.org/10.1182/blood-2011-03-342873
Tong WH, Sourbier C, Kovtunovych G, et al., 2011. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell, 20(3):315–327. https://doi.org/10.1016/j.ccr.2011.07.018
Torti SV, Torti FM, 2013. Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5):342–355. https://doi.org/10.1038/nrc3495
Vela D, Vela-Gaxha Z, 2018. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med, 50(2):e436. https://doi.org/10.1038/emm.2017.273
Viswanathan VS, Ryan MJ, Dhruv HD, et al., 2017. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 547(7664):453–457. https://doi.org/10.1038/nature23007
Wang B, Tontonoz P, 2019. Phospholipid remodeling in physiology and disease. Annu Rev Physiol, 81:165–188. https://doi.org/10.1146/annurev-physiol-020518-114444
Wang B, Zhang JQ, Song F, et al., 2016. EGFR regulates iron homeostasis to promote cancer growth through redistribution of transferrin receptor 1. Cancer Lett, 381(2): 331–340. https://doi.org/10.1016/j.canlet.2016.08.006
Wang CQ, Li YM, Yan S, et al., 2020. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun, 11:3162. https://doi.org/10.1038/s41467-020-16966-3
Wang JF, Wang C, Xu P, et al., 2021. PRMT1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Theranostics, 11(11):5387–5403. https://doi.org/10.7150/thno.42345
Wang KC, Chang HY, 2011. Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6):904–914. https://doi.org/10.1016/j.molcel.2011.08.018
Wang LY, Liu YC, Du TT, et al., 2020. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc−. Cell Death Differ, 27(2):662–675. https://doi.org/10.1038/s41418-019-0380-z
Wang M, Mao C, Ouyang LL, et al., 2019. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ, 26(11):2329–2343. https://doi.org/10.1038/s41418-019-0304-y
Wang W, Deng ZY, Hatcher H, et al., 2014. IRP2 regulates breast tumor growth. Cancer Res, 74(2):497–507. https://doi.org/10.1158/0008-5472.CAN-13-1224
Wang YF, Yu L, Ding J, et al., 2018. Iron metabolism in cancer. Int J Mol Sci, 20(1):95. https://doi.org/10.3390/ijms20010095
Wang ZL, Chen XW, Liu N, et al., 2021. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol Ther, 29(1):263–274. https://doi.org/10.1016/j.ymthe.2020.09.024
Wei S, Qiu TM, Yao XF, et al., 2020. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater, 384:121390. https://doi.org/10.1016/j.jhazmat.2019.121390
Wu CK, Dailey HA, Rose JP, et al., 2001. The 2.0 Å structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat Struct Biol, 8(2): 156–160. https://doi.org/10.1038/84152
Wu J, Minikes AM, Gao MH, et al., 2019. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature, 572(7769):402–406. https://doi.org/10.1038/s41586-019-1426-6
Wu KJ, Polack A, Dalla-Favera R, 1999. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science, 283(5402):676–679. https://doi.org/10.1126/science.283.5402.676
Wu YQ, Zhang SW, Gong XX, et al., 2020. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer, 19:39. https://doi.org/10.1186/s12943-020-01157-x
Wu YY, Jiang JN, Fang XD, et al., 2018. STEAP1 regulates tumorigenesis and chemoresistance during peritoneal metastasis of gastric cancer. Front Physiol, 9:1132. https://doi.org/10.3389/fphys.2018.01132
Xiao X, Yeoh BS, Vijay-Kumar M, 2017. Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr, 37:103–130. https://doi.org/10.1146/annurev-nutr-071816-064559
Xie Y, Hou W, Song X, et al., 2016. Ferroptosis: process and function. Cell Death Differ, 23(3):369–379. https://doi.org/10.1038/cdd.2015.158
Xu HN, Jiang Y, Xu XQ, et al., 2019. Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat Immunol, 20(12): 1621–1630. https://doi.org/10.1038/s41590-019-0542-7
Xu J, Wu KJ, Jia QJ, et al., 2020. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(9):673–689. https://doi.org/10.1631/jzus.B1900709
Xue X, Taylor M, Anderson E, et al., 2012. Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res, 72(9):2285–2293. https://doi.org/10.1158/0008-5472.CAN-11-3836
Xue X, Ramakrishnan SK, Weisz K, et al., 2016. Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab, 24(3):447–461. https://doi.org/10.1016/j.cmet.2016.07.015
Xue X, Bredell BX, Anderson ER, et al., 2017. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci USA, 114(45):E9608–E9617. https://doi.org/10.1073/pnas.1712946114
Yamazaki T, Souquere S, Chujo T, et al., 2018. Functional domains of NEAT1 architectural lncRNA induce para-speckle assembly through phase separation. Mol Cell, 70(6):1038–1053.e7. https://doi.org/10.1016/j.molcel.2018.05.019
Yang WS, Stockwell BR, 2016. Ferroptosis: death by lipid peroxidation. Trends Cell Biol, 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014
Yang WS, Sriramaratnam R, Welsch ME, et al., 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2): 317–331. https://doi.org/10.1016/j.cell.2013.12.010
Yuan P, Qi XY, Song AP, et al., 2021. LncRNA MAYA promotes iron overload and hepatocyte senescence through inhibition of YAP in non-alcoholic fatty liver disease. J Cell Mol Med, 25(15):7354–7366. https://doi.org/10.1111/jcmm.16764
Zhang CG, Zhang F, 2015. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell, 6(2):88–100. https://doi.org/10.1007/s13238-014-0119-z
Zhang KM, Ping LQ, Du T, et al., 2021. A ferroptosis-related lncRNAs signature predicts prognosis and immune micro-environment for breast cancer. Front Mol Biosci, 8:678877. https://doi.org/10.3389/fmolb.2021.678877
Zhang YL, Shi JJ, Liu XG, et al., 2018. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol, 20(10):1181–1192. https://doi.org/10.1038/s41556-018-0178-0
Zhang YY, Guo SQ, Wang S, et al., 2021. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol Environ Saf, 220:112376. https://doi.org/10.1016/j.ecoenv.2021.112376
Zhao MM, Wang RS, Zhou YL, et al., 2020. Emerging relationship between RNA helicases and autophagy. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(10):767–778. https://doi.org/10.1631/jzus.B2000245
Zheng X, Han H, Liu GP, et al., 2017. LncRNA wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO J, 36(22):3325–3335. https://doi.org/10.15252/embj.201797609
Zheng ZY, Zhang Q, Wu W, et al., 2021. Identification and validation of a ferroptosis-related long non-coding RNA signature for predicting the outcome of lung adenocarcinoma. Front Genet, 12:690509. https://doi.org/10.3389/fgene.2021.690509
Zhou BR, Liu J, Kang R, et al., 2020. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol, 66: 89–100. https://doi.org/10.1016/j.semcancer.2019.03.002
Acknowledgments
This work was supported by the National Key Research and Development Program of China (No. 2021YFC2700903), the National Basic Research Program of China (No. 2017YFA01 05201), the National Natural Science Foundation of China (Nos. 81672791 and 81872300), the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (No. LR18C060002), the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (No. LHDMY22H160006), and the ZJU-QILU Joint Research Institute QILU Group.
Author information
Authors and Affiliations
Contributions
Aifu LIN and Jian LIU contributed to the study design and data analysis, and edited the manuscript. Lei QU and Xinyu HE wrote the manuscript. Lei QU, Qian TANG, and Xiao FAN contributed to the figure and table design. All authors have read and approved the final version.
Corresponding authors
Additional information
Compliance with ethics guidelines
Lei QU, Xinyu HE, Qian TANG, Xiao FAN, Jian LIU, and Aifu LIN declare that they have no conflict of interest.
This review does not contain any studies with human or animal subjects performed by any authors.
Rights and permissions
About this article
Cite this article
Qu, L., He, X., Tang, Q. et al. Iron metabolism, ferroptosis, and lncRNA in cancer: knowns and unknowns. J. Zhejiang Univ. Sci. B 23, 844–862 (2022). https://doi.org/10.1631/jzus.B2200194
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.B2200194