Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A pipelined architecture for normal I/O order FFT

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We present a novel pipelined fast Fourier transform (FFT) architecture which is capable of producing the output sequence in normal order. A single-path delay commutator processing element (SDC PE) has been proposed for the first time. It saves a complex adder compared with the typical radix-2 butterfly unit. The new pipelined architecture can be built using the proposed processing element. The proposed architecture can lead to 100% hardware utilization and 50% reduction in the overall number of adders required in the conventional pipelined FFT designs. In order to produce the output sequence in normal order, we also present a bit reverser, which can achieve a 50% reduction in memory usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bi, G., Jones, E.V., 1989. A pipelined FFT processor for word-sequential data. IEEE Trans. Acoust. Speech Signal Process., 37(12):1982–1985. [doi:10.1109/29.45545]

    Article  Google Scholar 

  • Chang, Y.N., 2008. An efficient VLSI architecture for normal I/O order pipeline FFT design. IEEE Trans. Circ. Syst. II: Exp. Briefs, 55(12):1234–1238. [doi:10.1109/TCSII.2008.2008074]

    Article  Google Scholar 

  • Cheng, C., Parhi, K.K., 2007. High-throughput VLSI architecture for FFT computation. IEEE Trans. Circ. Syst. II: Exp. Briefs, 54(10):863–867. [doi:10.1109/TCSII.2007.901635]

    Article  Google Scholar 

  • Cortes, A., Velez, I., Sevillano, J.F., 2009. Radix rk FFTs: matricial representation and SDC/SDF pipeline implementation. IEEE Trans. Signal Process., 57(7):2824–2839. [doi:10.1109/TSP.2009.2016276]

    Article  MathSciNet  Google Scholar 

  • Despain, A.M., 1974. Fourier transform computer using CORDIC iterations. IEEE Trans. Comput., c-23(10): 993–1001. [doi:10.1109/T-C.1974.223800]

    Article  Google Scholar 

  • Garrido, M., Parhi, K.K., Grajal, J., 2009. A pipelined FFT architecture for real-valued signals. IEEE Trans. Circ. Syst. I: Reg. Papers, 56(12):2634–2643. [doi:10.1109/TCSI.2009.2017125]

    Article  MathSciNet  Google Scholar 

  • He, S., Torkelson, M., 1996. A New Approach to Pipeline FFT Processor. Proc. 10th Int. Symp. on Parallel Processing, p.766–770. [doi:10.1109/IPPS.1996.508145]

  • Lin, Y.W., Liu, H.Y., Lee, C.Y., 2005. A 1-GS/s FFT/IFFT processor for UWB applications. IEEE J. Sol.-State Circ., 40(8):1726–1735. [doi:10.1109/JSSC.2005.852007]

    Article  Google Scholar 

  • Oh, J.Y., Lim, M.S., 2005. Area and Power Efficient Pipeline FFT Algorithm. Proc. IEEE Workshop on Signal Processing System Design and Implementation, p.520–525. [doi:10.1109/SIPS.2005.1579923]

  • Rabiner, L.R., Gold, B., 1975. Theory and Application of Digital Signal Processing. Prentice-Hall, Inc., USA, p.604–609.

    Google Scholar 

  • Sansaloni, T., Perez-Pascual, A., Torres, V., Valls, J., 2005. Efficient pipeline FFT processors for WLAN MIMO-OFDM systems. Electron. Lett., 41(19):1043–1044. [doi:10.1049/el:20052597]

    Article  Google Scholar 

  • Sung, T.Y., Hsin, H.C., Cheng, Y.P., 2010. Low-power and high-speed CORDIC-based split-radix FFT processor for OFDM systems. Dig. Signal Process., 20(2):511–527. [doi:10.1016/j.dsp.2009.08.008]

    Article  Google Scholar 

  • Swartzlander, E.E., Young, W.K.W., Joseph, S.J., 1984. A radix 4 delay commutator for fast Fourier transforms processor implementation. IEEE J. Sol.-State Circ., 19(5):702–709. [doi:10.1109/JSSC.1984.1052211]

    Article  Google Scholar 

  • Wold, E.H., Despain, A.M., 1984. Pipeline and parallelpipeline FFT processors for VLSI implementation. IEEE Trans. Comput., c-33(5):414–426. [doi:10.1109/TC.1984.1676458]

    Article  Google Scholar 

  • Yeh, W.C., Jen, C.W., 2003. High-speed and low-power split-radix FFT. IEEE Trans. Signal Process., 51(3):864–874. [doi:10.1109/TSP.2002.806904]

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Yu, F. & Wang, Zk. A pipelined architecture for normal I/O order FFT. J. Zhejiang Univ. - Sci. C 12, 76–82 (2011). https://doi.org/10.1631/jzus.C1000234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1000234

Key words

CLC number