Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Efficient implementation of a cubic-convolution based image scaling engine

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

In video applications, real-time image scaling techniques are often required. In this paper, an efficient implementation of a scaling engine based on 4×4 cubic convolution is proposed. The cubic convolution has a better performance than other traditional interpolation kernels and can also be realized on hardware. The engine is designed to perform arbitrary scaling ratios with an image resolution smaller than 2560×1920 pixels and can scale up or down, in horizontal or vertical direction. It is composed of four functional units and five line buffers, which makes it more competitive than conventional architectures. A strict fixed-point strategy is applied to minimize the quantization errors of hardware realization. Experimental results show that the engine provides a better image quality and a comparatively lower hardware cost than reference implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho, E., Vanne, J., Hamalainen, T.D., Kuusilinna, K., 2007. Configurable implementation of parallel memory based real-time video downscaler. Microprocess. Microsyst., 31(5):283–292. [doi:10.1016/j.micpro.2006.09.003]

    Article  Google Scholar 

  • Arandiga, F., Donat, R., Mulet, P., 2003. Adaptive interpolation of images. Signal Process., 83(2):459–464. [doi:10.1016/S0165-1684(02)00445-0]

    Article  MATH  Google Scholar 

  • Chen, P.Y., Lien, C.Y., Lu, C.P., 2009. VLSI implementation of an edge-oriented image scaling processor. IEEE Trans. VLSI Syst., 17(9):1275–1284. [doi:10.1109/TVLSI.2008.2003003]

    Article  Google Scholar 

  • Erup, L., Gardner, F.M., Harris, R.A., 1993. Interpolation in digital modems. II. Implementation and performance. IEEE Trans. Commun., 41(6):998–1008. [doi:10.1109/26.231921]

    Article  Google Scholar 

  • Farrow, C.W., 1988. A Continuously Variable Digital Delay Element. IEEE Int. Symp. on Circuits and Systems, 3:2641–2645. [doi:10.1109/ISCAS.1988.15483]

    Google Scholar 

  • Feng, T., Xie, W.L., Yang, L.X., 2001. An Architecture and Implementation of Image Scaling Conversion. 4th Int. Conf. on ASIC, p.409–410. [doi:10.1109/ICASIC.2001.982587]

  • Gardner, F.M., 1993. Interpolation in digital modems. I. Fundamentals. IEEE Trans. Commun., 41(3):501–507. [doi: 10.1109/26.221081]

    Article  MATH  Google Scholar 

  • Her, I., Yuan, C.T., 1994. Resampling on a pseudohexagonal grid. CVGIP: Graph. Models Image Process., 56(4):336–347. [doi:10.1006/cgip.1994.1030]

    Article  Google Scholar 

  • Hong, K.P., Paik, J.K., Kim, H.J., Lee, C.H., 1996. An edge-preserving image interpolation system for a digital camcorder. IEEE Trans. Consum. Electron., 42(3):279–284. [doi:10.1109/30.536121]

    Article  Google Scholar 

  • Hou, H., Andrews, H., 1978. Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process., 26(6):508–517. [doi:10.1109/TASSP.1978.1163154]

    Article  MATH  Google Scholar 

  • Keys, R., 1981. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process., 29(6):1153–1160. [doi:10.1109/TASSP.1981.1163711]

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, C.H., Seong, S.M., Lee, J.A., Kim, L.S., 2003. Winscale: an image-scaling algorithm using an area pixel model. IEEE Trans. Circ. Syst. Video Technol., 13(6):549–553. [doi:10.1109/TCSVT.2003.813431]

    Article  Google Scholar 

  • Lehmann, T., Sovakar, A., Schmitt, W., Repges, R., 1997. A comparison of similarity measures for digital subtraction radiography. Comput. Biol. Med., 27(2):151–167. [doi:10.1016/S0010-4825(97)83769-9]

    Article  Google Scholar 

  • Lehmann, T.M., Gonner, C., Spitzer, K., 1999. Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imag., 18(11):1049–1075. [doi:10.1109/42.816070]

    Article  Google Scholar 

  • Li, X., Orchard, M.T., 2001. New edge-directed interpolation. IEEE Trans. Image Process., 10(10):1521–1527. [doi:10.1109/83.951537]

    Article  Google Scholar 

  • Lin, C.C., Sheu, M.H., Chiang, H.K., Liaw, C., Wu, Z.C., 2008. The Efficient VLSI Design of BI-CUBIC Convolution Interpolation for Digital Image Processing. IEEE Int. Symp. on Circuits and Systems, p.480–483. [doi:10.1109/ISCAS.2008.4541459]

  • Lin, C.C., Sheu, M.H., Liaw, C., Chiang, H.K., 2010. Fast first-order polynomials convolution interpolation for realtime digital image reconstruction. IEEE Trans. Circ. Syst. Video Technol., 20(9):1260–1264. [doi:10.1109/TCSVT.2010.2057017]

    Article  Google Scholar 

  • Nuno-Maganda, M.A., Arias-Estrada, M.O., 2006. Real-Time FPGA-Based Architecture for Bicubic Interpolation: an Application for Digital Image Scaling. Int. Conf. on Reconfigurable Computing and FPGAs, p.1–8. [doi:10.1109/RECONFIG.2005.34]

  • Parker, J.A., Kenyon, R.V., Troxel, D.E., 1983. Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imag., 2(1):31–39. [doi:10.1109/TMI.1983.4307610]

    Article  Google Scholar 

  • Sheikh, H.R., Sabir, M.F., Bovik, A.C., 2006. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process., 15(11):3440–3451. [doi:10.1109/TIP.2006.881959]

    Article  Google Scholar 

  • Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C., 2010. LIVE Image Quality Assessment Database Release 2. Available from http://live.ece.utexas.edu/research/quality/subjective.htm [Accessed on Oct. 18, 2010].

  • Shi, H.J., Ward, R., 2002. Canny Edge Based Image Expansion. IEEE Int. Symp. on Circuits and Systems, 1:785–788. [doi:10.1109/ISCAS.2002.1009958]

    Google Scholar 

  • Shi, J.Z., Reichenbach, S.E., 2006. Image interpolation by two-dimensional parametric cubic convolution. IEEE Trans. Image Process., 15(7):1857–1870. [doi:10.1109/TIP.2006.873429]

    Article  Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612. [doi:10.1109/TIP.2003.819861]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding.

Additional information

Project supported by the National High-Tech R & D Program (863) of China (No. 2009AA011706) and the Fundamental Research Funds for the Central Universities (No. KYJD09012)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ding, Y., Liu, My. et al. Efficient implementation of a cubic-convolution based image scaling engine. J. Zhejiang Univ. - Sci. C 12, 743–753 (2011). https://doi.org/10.1631/jzus.C1100040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100040

Key words

CLC number