Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A hybrid genetic algorithm to optimize device allocation in industrial Ethernet networks with real-time constraints

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

With the advance of automation technology, the scale of industrial communication networks at field level is growing. Guaranteeing real-time performance of these networks is therefore becoming an increasingly difficult task. This paper addresses the optimization of device allocation in industrial Ethernet networks with real-time constraints (DAIEN-RC). Considering the inherent diversity of real-time requirements of typical industrial applications, a novel optimization criterion based on relative delay is proposed. A hybrid genetic algorithm incorporating a reduced variable neighborhood search (GA-rVNS) is developed for DAIEN-RC. Experimental results show that the proposed novel scheme achieves a superior performance compared to existing schemes, especially for large scale industrial networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bean, J.C., 1994. Genetic algorithms and random keys for sequencing and optimization. INFORMS J. Comput., 6(2): 154–160. [doi:10.1287/ijoc.6.2.154]

    Article  MATH  Google Scholar 

  • Carro-Calvo, L., Salcedo-Sanz, S., Portilla-Figueras, J.A., Ortiz-Garcia, E.G., 2010. A genetic algorithm with switch-device encoding for optimal partition of switched industrial Ethernet networks. J. Network Comput. Appl., 33(4):375–382. [doi:10.1016/j.jnca.2010.03.003]

    Article  Google Scholar 

  • Elbaum, R., Sidi, M., 1996. Topological design of local-area networks using genetic algorithms. IEEE/ACM Trans. Network., 4(5):766–778. [doi:10.1109/90.541324]

    Article  Google Scholar 

  • Felser, M., 2005. Real-time Ethernet-industry prospective. Proc. IEEE, 93(6):1118–1129. [doi:10.1109/JPROC.2005.849720]

    Article  Google Scholar 

  • Gen, M., Cheng, R., 1997. Genetic Algorithm and Engineering Optimization. Wiley, New York.

    Google Scholar 

  • Gen, M., Cheng, R.W., Lin, L., 2008. Network Model and Optimization Multiobjective Genetic Algorithm Approach. Springer Verlag Berlin Heidelberg, p.274–283.

  • Georges, G.P., Krommenacker, N., Divoux, T., Rondeau, E., 2006. A design process of switched Ethernet architectures according to real-time application constraints. Eng. Appl. Artif. Intell., 19(3):335–344. [doi:10.1016/j.engappai.2005.09.004]

    Article  Google Scholar 

  • Hansen, P., Mladenovic, N., 2001. Variable neighborhood search: principles and applications. Eur. J. Oper. Res., 130(3):449–467. [doi:10.1016/S0377-2217(00)00100-4]

    Article  MathSciNet  MATH  Google Scholar 

  • Hart, W.E., Rosin, C.R., Belew, R.K., Morris, G.M., 2000. Improved Evolutionary Hybrids for Flexible Ligand Docking in AutoDock. In: Floudas, C.A., Pardalos, P.M. (Eds.), Optimization of Computational Chemistry and Molecular Biology. Kluwer, the Netherlands, p.209–230.

  • IEC 61784-2, 2005. Digital Data Communications for Measurement and Control — Part 2: Additional Profiles for ISO/IEC 8802-3 Based Communication Networks in Real-Time Applications. IEC, Switzerland.

    Google Scholar 

  • IEEE 802.1Q, 2003. Virtual Bridged Local Area Networks. IEEE, New York, USA.

    Google Scholar 

  • Jasperneite, J., Neumann, P., Theis, M., Watson, K., 2002. Deterministic Real-Time Communication with Switched Ethernet. Proc. 4th IEEE Int. Workshop on Factory Communication Systems, p.11–18. [doi:10.1109/WFCS.2002.1159695]

  • Kjellsson, J., Vallestad, A.E., Steigmann, R., Dzung, D., 2009. Integration of a wireless I/O interface for Profibus and Profinet for factory automation. IEEE Trans. Ind. Electron., 56(10):4279–4287. [doi:10.1109/TIE.2009.2017098]

    Article  Google Scholar 

  • Krommenacker, N., Divoux, T., Rondeau, E., 2002. Using Genetic Algorithm to Design Switched Ethernet Industrial Network. Proc. IEEE Int. Symp. on Industrial Electronics, 1:152–157. [doi:10.1109/ISIE.2002.1026057]

    Article  Google Scholar 

  • Li, F., Zhang, Q., Zhang, W., 2007. Graph partitioning strategy for the topology design of industrial network. IET Commun., 1(6):1104–1110. [doi:10.1049/iet-com:20060677]

    Article  Google Scholar 

  • Michalewicz, Z., 1994. Genetic Algorithms+Data Structures=Evolution Programs. Springer Verlag, New York.

    MATH  Google Scholar 

  • Mladenovic, N., Hansen, P., 1997. Variable neighborhood search. Comput. Oper. Res., 24(11):1097–1100. [doi:10.1016/S0305-0548(97)00031-2]

    Article  MathSciNet  MATH  Google Scholar 

  • Song, Y., Koubaa, A., Simonot, F., 2002. Switched Ethernet for Real-Time Industrial Communication Modelling and Message Buffering Delay Evaluation. Proc. 4th Int. Workshop on Factory Communication Systems, p.27–30. [doi:10.1109/WFCS.2002.1159697]

  • Tang, M.L., Yao, X., 2007. A memetic algorithm for VLSI floorplanning. IEEE Trans. Syst. Man Cybern. B, 37(1): 62–69. [doi:10.1109/TSMCB.2006.883268]

    Article  Google Scholar 

  • Wang, Z., Song, Y.Q., Chen, J.M., Sun, Y.X., 2002. Real-time Characteristics of Ethernet and Its Improvement. Proc. 4th World Congress on Intelligent Control and Automation, 2:1311–1318. [doi:10.1109/WCICA.2002.1020794]

    Google Scholar 

  • Zhang, L., Wang, Z., 2010. Real-Time Performance Evaluation in Hybrid Industrial Ethernet Networks. Proc. 8th World Congress on Intelligent Control and Automation, p.1842–1845. [doi:10.1109/WCICA.2010.5554500]

  • Zhang, Q., Zhang, W.D., 2007. Using genetic algorithm to design switched Ethernet industrial network. Eng. Appl. Artif. Intell., 20(1):79–88. [doi:10.1016/j.engappai.2006.03.004]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 60873223 and 90818010), the State Key Laboratory of Industrial Control Technology (Nos. ICT0903, ICT1003, and ICT1103), and the Key Laboratory of Wireless Sensor Network & Communication of Chinese Academy of Sciences (No. 2011001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Lampe, M. & Wang, Z. A hybrid genetic algorithm to optimize device allocation in industrial Ethernet networks with real-time constraints. J. Zhejiang Univ. - Sci. C 12, 965–975 (2011). https://doi.org/10.1631/jzus.C1100045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100045

Key words

CLC number