Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

A novel method based on rough sets (RS) and the affinity propagation (AP) clustering algorithm is developed to optimize a radial basis function neural network (RBFNN). First, attribute reduction (AR) based on RS theory, as a preprocessor of RBFNN, is presented to eliminate noise and redundant attributes of datasets while determining the number of neurons in the input layer of RBFNN. Second, an AP clustering algorithm is proposed to search for the centers and their widths without a priori knowledge about the number of clusters. These parameters are transferred to the RBF units of RBFNN as the centers and widths of the RBF function. Then the weights connecting the hidden layer and output layer are evaluated and adjusted using the least square method (LSM) according to the output of the RBF units and desired output. Experimental results show that the proposed method has a more powerful generalization capability than conventional methods for an RBFNN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beyhan, S., Alci, M., 2010. Stable modeling based control methods using a new RBF network. ISA Trans., 49(4): 510–518. [doi:10.1016/j.isatra.2010.04.005]

    Article  Google Scholar 

  • Blake, C.L., Merz, C.J., 1998. UCI Repository of Machine Learning Databases, 1998. Department of Information and Computer Science, University of California, Irvine, CA. Available from http://www.ics.uci.edu/mlearn/Machine-Learning.html [Accessed on Sept. 23, 2011].

    Google Scholar 

  • Chen, S., Cowan, C.F.N., Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neur. Network, 2(2):302–309. [doi:10.1109/72.80341]

    Article  Google Scholar 

  • Cheng, J.H., Chen, H.P., Lin, Y.M., 2010. A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4.5. Exp. Syst. Appl., 37(3): 1814–1820. [doi:10.1016/j.eswa.2009.07.019]

    Article  Google Scholar 

  • Coelho, L.S., Santos, A.A.P., 2011. A RBF neural network model with GARCH errors: application to electricity price forecasting. Electr. Power Syst. Res., 81(1):74–83. [doi:10.1016/j.epsr.2010.07.015]

    Article  Google Scholar 

  • Du, D.J., Fei, M.R., Li, L.X., 2008. Radial-basis-function neural network based on fast recursive algorithm and its application. Control Theory Appl., 25(5):827–830.

    MATH  Google Scholar 

  • Du, D.J., Li, K., Fei, M.R., 2010. A fast multi-output RBF neural network construction method. Neurocomputing, 73(10–12):2196–2202. [doi:10.1016/j.neucom.2010.01.014]

    Article  Google Scholar 

  • Frey, B.J., Dueck, D., 2007. Clustering by passing messages between data points. Science, 315(5814):972–976. [doi:10.1126/science.1136800]

    Article  MathSciNet  MATH  Google Scholar 

  • Guerra, A.F., Coelho, L., 2008. Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos Sol. Fract., 35(5): 967–979. [doi:10.1016/j.chaos.2006.05.077]

    Article  MATH  Google Scholar 

  • Hou, M.Z., Han, X.L., 2011. The multidimensional function approximation based on constructive wavelet RBF neural network. Appl. Soft Comput., 11(2):2173–2177. [doi:10.1016/j.asoc.2010.07.016]

    Article  MathSciNet  Google Scholar 

  • Jayasree, T., Devaraj, D., Sukanesh, R., 2010. Power quality disturbance classification using Hilbert transform and RBF networks. Neurocomputing, 73(7–9):1451–1456. [doi:10.1016/j.neucom.2009.11.008]

    Article  Google Scholar 

  • Jing, X.Y., Yao, Y.F., Yang, J.Y., Zhang, D., 2008. A novel face recognition approach based on kernel discriminative common vectors (KDCV) feature extraction and RBF neural network. Neurocomputing, 71(13–15):3044–3048. [doi:10.1016/j.neucom.2007.08.027]

    Article  Google Scholar 

  • Lee, C.M., Ko, C.N., 2009. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing, 73(1–3):449–460. [doi:10.1016/j.neucom.2009.07.005]

    Article  Google Scholar 

  • Mao, K.Z., 2002. RBF neural network center selection based on Fisher ratio class separability measure. IEEE Trans. Neur. Networks, 13(5):1211–1217. [doi:10.1109/TNN.2002.1031953]

    Article  Google Scholar 

  • Mao, K.Z., Huang, G.B., 2005. Neuron selection for RBF neural network classifier based on data structure preserving criterion. IEEE Trans. Neur. Networks, 16(6): 1531–1540. [doi:10.1109/TNN.2005.853575]

    Article  Google Scholar 

  • Park, H.S., Chung, Y.D., Oh, S.K., Pedrycz, W., Kim, H.K., 2011. Design of information granule-oriented RBF neural networks and its application to power supply for high-field magnet. Eng. Appl. Artif. Intell., 24(3):543–554. [doi:10.1016/j.engappai.2010.11.001]

    Article  Google Scholar 

  • Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W., 1995. Rough sets. Commun. ACM, 38(11):88–95. [doi:10.1145/219717.219791]

    Article  Google Scholar 

  • Qu, N., Mi, H., Wang, B., Ren, Y.L., 2009. Application of GA-RBF networks to the nondestructive determination of active component in pharmaceutical powder by NIR spectroscopy. J. Taiwan Inst. Chem. Eng., 40(2):162–167. [doi:10.1016/j.jtice.2008.08.002]

    Article  Google Scholar 

  • Shen, W., Guo, X.P., Wu, C., Wu, D.S., 2011. Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowl.-Based Syst., 24(3):378–385. [doi:10.1016/j.knosys.2010.11.001]

    Article  Google Scholar 

  • Su, S., Duan, X.Z., Chan, W.L., Li, Z.H., 2009. Erroneous measurement detection in substation automation system using OLS based RBF neural network. Int. J. Electr. Power Energy Syst., 31(7–8):351–355. [doi:10.1016/j.ijepes.2009.03.008]

    Google Scholar 

  • Wu, X.J., Zhu, X.J., Cao, G.Y., Tu, H.Y., 2008. Predictive control of SOFC based on a GA-RBF neural network model. J. Power Sources, 179(1):232–239. [doi:10.1016/j.jpowsour.2007.12.036]

    Article  Google Scholar 

  • Xia, D.Y., Wu, F., Zhang, X.Q., Zhuang, Y.T., 2008. Local and global approaches of affinity propagation clustering for large scale data. J. Zhejiang Univ.-Sci. A, 9(10):1373–1381. [doi:10.1631/jzus.A0720058]

    Article  MATH  Google Scholar 

  • Yu, D.L., Gomm, J.B., Williams, D., 1997. A recursive orthogonal least squares algorithm for training RBF networks. Neur. Process. Lett., 5(3):167–176. [doi:10.1023/A:1009622226531]

    Article  Google Scholar 

  • Zhang, A.S., Zhang, L., 2004. RBF neural networks for the prediction of building interference effects. Comput. Struct., 82(27):2333–2339. [doi:10.1016/j.compstruc.2004.05.014]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-zheng Xu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 41074003 and 60975039), the Opening Foundation of the Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (No. IIP2010-1), and the Youth Science Foundation of China University of Mining and Technology (Nos. 2008A045 and 2009A053)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Xz., Ding, Sf., Shi, Zz. et al. Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm. J. Zhejiang Univ. - Sci. C 13, 131–138 (2012). https://doi.org/10.1631/jzus.C1100176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100176

Key words

CLC number