Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical solution of potential flow equations with a predictor-corrector finite difference method

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition. A finite difference method with a predictor-corrector method is applied to solve the nonlinear potential flow equations in a two-dimensional (2D) tank. The irregular tank is mapped onto a fixed square domain with rectangular cells through a proper mapping function. A staggered mesh system is adopted in a 2D tank to capture the wave elevation of the transient fluid. The finite difference method with a predictor-corrector scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition. We present the numerical results of wave elevations from small to large amplitude waves with free oscillation motion, and the numerical solutions of wave elevation with horizontal excited motion. The beating period and the nonlinear phenomenon are very clear. The numerical solutions agree well with the analytical solutions and previously published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour, M., Hassanabad, M.G., 2009. A novel 2D BEM with composed elements to study sloshing phenomenon. J. Appl. Fluid Mech., 2(2):77–83.

    Google Scholar 

  • Abramson, H.N., 1966. The Dynamic Behavior of Liquids in Moving Containers. Technical Report, SP 106. NASA.

  • Chainais-Hillairet, C., Peng, Y.J., Violet, I., 2009. Numerical solutions of Euler-Poisson systems for potential flows. Appl. Numer. Math., 59(2):301–315.

    Article  MathSciNet  MATH  Google Scholar 

  • Faltinsen, O.M., 1974. A nonliner theory of sloshing in retangular tanks. J. Ship Res., 18(4):224–241.

    Google Scholar 

  • Faltinsen, O.M., 1978. A numerical non-linear method of sloshing in tanks with two dimensional flow. J. Ship Res., 18(4):224–241.

    Google Scholar 

  • Faltinsen, O.M., Timokha, A.N., 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J. Fluid Mech., 470:319–357. [doi:10.1017/S0022112002002112]

    Article  MathSciNet  MATH  Google Scholar 

  • Frandsen, J.B., 2004. Sloshing motions in excited tanks. J. Comput. Phys., 196(1):53–87. [doi:10.1016/j.jcp.2003.10.031]

    Article  MATH  Google Scholar 

  • Friedrichs, K., 1934. Über ein minimumproblem für potentialströmungen mit freiem rande. Math. Ann., 109(1):60–82 (in French). [doi:10.1007/BF01449125]

    Article  MathSciNet  Google Scholar 

  • Hromadka, T.V., Whitley, R.J., 2005. Approximating threedimensional steady-state potential flow problems using two-dimensional complex polynomials. Eng. Anal. Bound. Elem., 29(2):190–194. [doi:10.1016/j.enganabound.2004.07.004]

    Article  MATH  Google Scholar 

  • Ikegawa, M., 1974. Finite Element Analysis of Fluid Motion in a Container, Infinite Element Methods in Flow Problems. UAH Press, Huntsville.

    Google Scholar 

  • Klaseboer, E., Derek, R.M., Chan, Y.C., 2011. BEM simulations of potential flow with viscous effects as applied to a rising bubble. Eng. Anal. Bound. Elem., 35(3):489–494. [doi:10.1016/j.enganabound.2010.09.005]

    Article  Google Scholar 

  • Luke, J.C., 1967. A variational principle for a fluid with a free surface. J. Fluid Mech., 27(2):395–397. [doi:10.1017/S0022112067000412]

    Article  MathSciNet  MATH  Google Scholar 

  • Miles, J.W., 1977. On Hamilton’s principle for surface waves. J. Fluid Mech., 83(1):153–158. [doi:10.1017/S0022112077001104]

    Article  MathSciNet  MATH  Google Scholar 

  • Moiseyev, N.N., 1958. On the theory of nonlinear vibrations of a liquid of finite volume. Appl. Math. Mech., 22(5): 224–241.

    Google Scholar 

  • Nakayama, T., Washizu, K., 1981. The boundary element method applied to the analysis of two dimensional nonlinear sloshing problems. Int. J. Numer. Method Eng., 17(11):1631–1646. [doi:10.1002/nme.1620171105]

    Article  MATH  Google Scholar 

  • Penney, W.G., Price, A.T., 1952. Finite periodic stationary gravity waves in a perfect liquid. Phil. Trans. R. Soc. Lond. A, 224(882):254–284. [doi:10.1098/rsta.1952.0004]

    Google Scholar 

  • Phillips, N.A., 1957. A coordinate system having some special advantages for numerical forecasting. J. Meteorol., 14(2):184–185. [doi:10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2]

    Article  Google Scholar 

  • Rocca, M.L., Mele, P., Armenio, V., 1997. Variational approach to the problem of sloshing in a moving container. J. Theoret. Appl. Fluid Mech., 1(4):280–310.

    Google Scholar 

  • Šarler, B., 2009. Solution of potential flow problems by the modified method of fundamental solutions: formulations with the single layer and the double layer fundamental solutions. Eng. Anal. Bound. Elem., 33(12):1374–1382. [doi:10.1016/j.enganabound.2009.06.008]

    Article  MathSciNet  Google Scholar 

  • Tarafder, M.S., Suzuki, K., 2008. Numerical calculation of free surface potential flow around a ship using the modified Rankine source panel method. Ocean Eng., 35(5–6):536–544. [doi:10.1016/j.oceaneng.2007.11.004]

    Article  Google Scholar 

  • Wang, H., Zhang, H., 2007. Boundary element method for simulating the coupled motion of a fluid and a threedimensional body. Appl. Math. Comput., 190(2):1328–1343. [doi:10.1016/j.amc.2007.02.053]

    Article  MathSciNet  MATH  Google Scholar 

  • Whitham, G.B., 1965. A general approach to linear and non-linear dispersive waves using a Lagrangian. J. Fluid Mech., 22(2):273–283. [doi:10.1017/S0022112065000745]

    Article  MathSciNet  Google Scholar 

  • Wu, C.H., Chen, B.F., 2009. Sloshing waves and resonance modes of fluid in a 3D tank by a time independent finite difference method. Ocean Eng., 36(6–7):500–510. [doi:10.1016/j.oceaneng.2009.01.020]

    Article  Google Scholar 

  • Wu, G.X., 2007. Second order resonance of sloshing in a tank. Ocean Eng., 34(17–18):2345–2349. [doi:10.1016/j.oceaneng.2007.05.004]

    Article  Google Scholar 

  • Zakharov, V.E., 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prokl. Mekh. Tekh. Fiz., 9(2):190–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qiang Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Zq. Numerical solution of potential flow equations with a predictor-corrector finite difference method. J. Zhejiang Univ. - Sci. C 13, 393–402 (2012). https://doi.org/10.1631/jzus.C1100313

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100313

Key words

CLC number