Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nonlinear path-following method for fixed-wing unmanned aerial vehicles

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

A path-following method for fixed-wing unmanned aerial vehicles (UAVs) is presented in this paper. This method consists of an outer guidance loop and an inner control loop. The guidance law relies on the idea of tracking a virtual target. The motion of the virtual target is explicitly specified. The main advantage of this guidance law is that it considers the maneuvering ability of the aircraft. The aircraft can asymptotically approach the defined path with smooth movements. Meanwhile, the aircraft can anticipate the upcoming transition of the flight path. Moreover, the inner adaptive flight control loop based on attractive manifolds can follow the command generated by the outer guidance loop. This adaptive control law introduces a first-order filter to avoid solving the partial differential equation in the immersion and invariance adaptive control. The performance of the proposed path-following method is validated by the numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astolfi, A., Ortega, R., 2003. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Autom. Control, 48(4):590–606. [doi:10.1109/TAC.2003.809820]

    Article  MathSciNet  Google Scholar 

  • Bruggemann, T.S., Ford, J.J., Walker, R.A., 2011. Control of aircraft for inspection of linear infrastructure. IEEE Trans. Control Syst. Technol., 19(6):1397–1409. [doi:10.1109/ TCST.2010.2093937]

    Article  Google Scholar 

  • Cichella, V., Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A.M., Hovakimyan, N., 2011. Geometric 3D Path-Following Control for a Fixed-Wing UAV on SO(3). AIAA Guidance, Navigation and Control Conf., No. AIAA-2011-6415.

  • Coulter, R.C., 1992. Implementation of the Pure Pursuit Path Tracking Algorithm. Technical Report No. CMU-RI-TR-92-01, Robotics Institute, Carnegie Mellon University.

  • Ducard, G., Geering, H., 2008a. Airspeed Control for Unmanned Aerial Vehicles: a Nonlinear Dynamic Inversion Approach. 16th Mediterranean Conf. on Control and Automation, p.676–681. [doi:10.1109/MED.2008.4602202]

  • Ducard, G., Geering, H., 2008b. Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles. J. Guid. Control Dyn., 31(1):225–237. [doi:10. 2514/1.31693]

    Article  Google Scholar 

  • Gates, D.J., 2010. Nonlinear path following method. J. Guid. Control Dyn., 33(2):321–332. [doi:10.2514/1.46679]

    Article  Google Scholar 

  • Holt, R.S., Beard, R.W., 2010. Vision-based road-following using proportional navigation. J. Intell. Rob. Syst., 57(1–4):193–216. [doi:10.1007/s10846-009-9353-7]

    MATH  Google Scholar 

  • Medagoda, E.D.B., Gibbens, P.W., 2010. Synthetic-waypoint guidance algorithm for following a desired flight trajectory. J. Guid. Control Dyn., 33(2):601–606. [doi:10.2514/1.46204]

    Article  Google Scholar 

  • Niculescu, M., 2001. Lateral Track Control for Aerosonde UAV. Proc. 39th AIAA Aerospace Sciences Meeting and Exhibit, No. AIAA-2001-0016.

  • Normey-Rico, J.E., Gómez-Ortega, J., Camacho, E.F., 1999. A Smith-predictor-based generalised predictive controller for mobile robot path-tracking. Control Eng. Pract., 7(6): 729–740. [doi:10.1016/S0967-0661(99)00025-8]

    Article  Google Scholar 

  • Park, S., Deyst, J., How, J.P., 2007. Performance and Lyapunov stability of a nonlinear path-following guidance method. J. Guid. Control Dyn., 30(6):1718–1728. [doi:10.2514/1. 28957]

    Article  Google Scholar 

  • Raffo, G.V., Gomes, G.K., Normey-Rico, J.E., Kelber, C.R., Becker, L.B., 2009. A predictive controller for autonomous vehicle path tracking. IEEE Trans. Intell. Transp. Syst., 10(1):92–102. [doi:10.1109/TITS.2008.2011697]

    Article  Google Scholar 

  • Raffo, G.V., Ortega, M.G., Rubio, F.R., 2010. An integral predictive/nonlinear H control structure for a quadrotor helicopter. Automatica, 46(1):29–39. [doi:10.1016/j. automatica.2009.10.018]

    Article  MathSciNet  MATH  Google Scholar 

  • Raffo, G.V., Ortega, M.G., Rubio, F.R., 2011. Path tracking of a UAV via an underactuated H control strategy. Eur. J. Control, 17(2):194–213. [doi:10.3166/ejc.17.194-213]

    Article  MathSciNet  MATH  Google Scholar 

  • Rathinam, S., Kim, Z.W., Soghikian, A., Sengupta, R., 2005. Vision Based Following of Locally Linear Structures Using an Unmanned Aerial Vehicle. 44th IEEE Conf. on Decision and Control, and European Control Conf., p.6085–6090. [doi:10.1109/CDC.2005.1583135]

  • Seo, D., Akella, M.R., 2008. High-performance spacecraft adaptive attitude-tracking control through attracting manifold design. J. Guid. Control Dyn., 31(4):884–891. [doi:10.2514/1.33308]

    Article  Google Scholar 

  • Seo, D., Akella, M.R., 2009. Non-certainty equivalence adaptive control for robot manipulator systems. Syst. Control Lett., 58(4):304–308. [doi:10.1016/j.systconle.2008.11.008]

    Article  MathSciNet  MATH  Google Scholar 

  • Shin, D., Kim, Y., 2004. Reconfigurable flight control system design using adaptive neural networks. IEEE Trans. Control Syst. Technol., 12(1):87–100. [doi:10.1109/TCST.2003.821957]

    Article  Google Scholar 

  • Shin, Y., Calise, A.J., 2008. Adaptive control of advanced fighter aircraft in nonlinear flight regimes. J. Guid. Control Dyn., 31(5):1464–1477. [doi:10.2514/1.30213]

    Article  Google Scholar 

  • Snell, S., Enns, D., Garrard, W., 1992. Nonlinear inversion flight control for a supermaneuverable aircraft. J. Guid. Control Dyn., 15(4):976–984. [doi:10.2514/3.20932]

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-ming Zhang.

Additional information

Project supported by the Aeronautical Science Foundation of China (Nos. 20100758002 and 20128058006) and the National Natural Science Foundation of China (No. 61174168)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Jm., Li, Q., Cheng, N. et al. Nonlinear path-following method for fixed-wing unmanned aerial vehicles. J. Zhejiang Univ. - Sci. C 14, 125–132 (2013). https://doi.org/10.1631/jzus.C1200195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200195

Key words

CLC number