Abstract
A path-following method for fixed-wing unmanned aerial vehicles (UAVs) is presented in this paper. This method consists of an outer guidance loop and an inner control loop. The guidance law relies on the idea of tracking a virtual target. The motion of the virtual target is explicitly specified. The main advantage of this guidance law is that it considers the maneuvering ability of the aircraft. The aircraft can asymptotically approach the defined path with smooth movements. Meanwhile, the aircraft can anticipate the upcoming transition of the flight path. Moreover, the inner adaptive flight control loop based on attractive manifolds can follow the command generated by the outer guidance loop. This adaptive control law introduces a first-order filter to avoid solving the partial differential equation in the immersion and invariance adaptive control. The performance of the proposed path-following method is validated by the numerical simulation.
Similar content being viewed by others
References
Astolfi, A., Ortega, R., 2003. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Autom. Control, 48(4):590–606. [doi:10.1109/TAC.2003.809820]
Bruggemann, T.S., Ford, J.J., Walker, R.A., 2011. Control of aircraft for inspection of linear infrastructure. IEEE Trans. Control Syst. Technol., 19(6):1397–1409. [doi:10.1109/ TCST.2010.2093937]
Cichella, V., Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A.M., Hovakimyan, N., 2011. Geometric 3D Path-Following Control for a Fixed-Wing UAV on SO(3). AIAA Guidance, Navigation and Control Conf., No. AIAA-2011-6415.
Coulter, R.C., 1992. Implementation of the Pure Pursuit Path Tracking Algorithm. Technical Report No. CMU-RI-TR-92-01, Robotics Institute, Carnegie Mellon University.
Ducard, G., Geering, H., 2008a. Airspeed Control for Unmanned Aerial Vehicles: a Nonlinear Dynamic Inversion Approach. 16th Mediterranean Conf. on Control and Automation, p.676–681. [doi:10.1109/MED.2008.4602202]
Ducard, G., Geering, H., 2008b. Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles. J. Guid. Control Dyn., 31(1):225–237. [doi:10. 2514/1.31693]
Gates, D.J., 2010. Nonlinear path following method. J. Guid. Control Dyn., 33(2):321–332. [doi:10.2514/1.46679]
Holt, R.S., Beard, R.W., 2010. Vision-based road-following using proportional navigation. J. Intell. Rob. Syst., 57(1–4):193–216. [doi:10.1007/s10846-009-9353-7]
Medagoda, E.D.B., Gibbens, P.W., 2010. Synthetic-waypoint guidance algorithm for following a desired flight trajectory. J. Guid. Control Dyn., 33(2):601–606. [doi:10.2514/1.46204]
Niculescu, M., 2001. Lateral Track Control for Aerosonde UAV. Proc. 39th AIAA Aerospace Sciences Meeting and Exhibit, No. AIAA-2001-0016.
Normey-Rico, J.E., Gómez-Ortega, J., Camacho, E.F., 1999. A Smith-predictor-based generalised predictive controller for mobile robot path-tracking. Control Eng. Pract., 7(6): 729–740. [doi:10.1016/S0967-0661(99)00025-8]
Park, S., Deyst, J., How, J.P., 2007. Performance and Lyapunov stability of a nonlinear path-following guidance method. J. Guid. Control Dyn., 30(6):1718–1728. [doi:10.2514/1. 28957]
Raffo, G.V., Gomes, G.K., Normey-Rico, J.E., Kelber, C.R., Becker, L.B., 2009. A predictive controller for autonomous vehicle path tracking. IEEE Trans. Intell. Transp. Syst., 10(1):92–102. [doi:10.1109/TITS.2008.2011697]
Raffo, G.V., Ortega, M.G., Rubio, F.R., 2010. An integral predictive/nonlinear H ∞ control structure for a quadrotor helicopter. Automatica, 46(1):29–39. [doi:10.1016/j. automatica.2009.10.018]
Raffo, G.V., Ortega, M.G., Rubio, F.R., 2011. Path tracking of a UAV via an underactuated H ∞ control strategy. Eur. J. Control, 17(2):194–213. [doi:10.3166/ejc.17.194-213]
Rathinam, S., Kim, Z.W., Soghikian, A., Sengupta, R., 2005. Vision Based Following of Locally Linear Structures Using an Unmanned Aerial Vehicle. 44th IEEE Conf. on Decision and Control, and European Control Conf., p.6085–6090. [doi:10.1109/CDC.2005.1583135]
Seo, D., Akella, M.R., 2008. High-performance spacecraft adaptive attitude-tracking control through attracting manifold design. J. Guid. Control Dyn., 31(4):884–891. [doi:10.2514/1.33308]
Seo, D., Akella, M.R., 2009. Non-certainty equivalence adaptive control for robot manipulator systems. Syst. Control Lett., 58(4):304–308. [doi:10.1016/j.systconle.2008.11.008]
Shin, D., Kim, Y., 2004. Reconfigurable flight control system design using adaptive neural networks. IEEE Trans. Control Syst. Technol., 12(1):87–100. [doi:10.1109/TCST.2003.821957]
Shin, Y., Calise, A.J., 2008. Adaptive control of advanced fighter aircraft in nonlinear flight regimes. J. Guid. Control Dyn., 31(5):1464–1477. [doi:10.2514/1.30213]
Snell, S., Enns, D., Garrard, W., 1992. Nonlinear inversion flight control for a supermaneuverable aircraft. J. Guid. Control Dyn., 15(4):976–984. [doi:10.2514/3.20932]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Aeronautical Science Foundation of China (Nos. 20100758002 and 20128058006) and the National Natural Science Foundation of China (No. 61174168)
Rights and permissions
About this article
Cite this article
Zhang, Jm., Li, Q., Cheng, N. et al. Nonlinear path-following method for fixed-wing unmanned aerial vehicles. J. Zhejiang Univ. - Sci. C 14, 125–132 (2013). https://doi.org/10.1631/jzus.C1200195
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1200195