Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A multi-crossover and adaptive island based population algorithm for solving routing problems

  • Science Letters
  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose a multi-crossover and adaptive island based population algorithm (MAIPA). This technique divides the entire population into subpopulations, or demes, each with a different crossover function, which can be switched according to the efficiency. In addition, MAIPA reverses the philosophy of conventional genetic algorithms. It gives priority to the autonomous improvement of the individuals (at the mutation phase), and introduces dynamism in the crossover probability. Each subpopulation begins with a very low value of crossover probability, and then varies with the change of the current generation number and the search performance on recent generations. This mechanism helps prevent premature convergence. In this research, the effectiveness of this technique is tested using three well-known routing problems, i.e., the traveling salesman problem (TSP), capacitated vehicle routing problem (CVRP), and vehicle routing problem with backhauls (VRPB). MAIPA proves to be better than a traditional island based genetic algorithm for all these three problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anbuudayasankar, S., Ganesh, K., Lenny Koh, S.C., Ducq, Y., 2012. Modified savings heuristics and genetic algorithm for bi-objective vehicle routing problem with forced backhauls. Expert Syst. Appl., 39(3):2296–2305. [doi:10.1016/j.eswa.2011.08.009]

    Article  Google Scholar 

  • Bae, J., Rathinam, S., 2012. Approximation algorithms for multiple terminal, Hamiltonian path problems. Optim. Lett., 6(1):69–85. [doi:10.1007/s11590-010-0252-4]

    Article  MathSciNet  MATH  Google Scholar 

  • Cantú-Paz, E., 1998. A survey of parallel genetic algorithms. Calcul. Parall. Res. Syst. Rep., 10(2):141–171.

    Google Scholar 

  • Davis, L., 1985. Applying Adaptive Algorithms to Epistatic Domains. Proc. Int. Joint Conf. on Artificial Intelligence, p.161–163.

    Google Scholar 

  • de Jong, K., 1975. Analysis of the Behavior of a Class of Genetic Adaptive Systems. MS Thesis, University of Michigan, Michigan, USA.

    Google Scholar 

  • Goldberg, D., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Boston, USA.

    MATH  Google Scholar 

  • Golden, B., Baker, E., Alfaro, J., Schaffer, J., 1985. The Vehicle Routing Problem with Backhauling: Two Approaches. Proc. 21st Annual Meeting of SETIMS, p.90–92.

    Google Scholar 

  • Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Michigan, USA.

    Google Scholar 

  • Laporte, G., 1992. The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res., 59(3):345–358. [doi:10.1016/0377-2217(92)90192-C]

    Article  MATH  Google Scholar 

  • Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S., 1999. Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif. Intell. Rev., 13(2):129–170. [doi:10.1023/A:1006529012972]

    Article  Google Scholar 

  • Lawler, E., Lenstra, J., Kan, A., Shmoys, D., 1985. The Traveling Salesman Problem: a Guided Tour of Combinatorial Optimization, Volume 3. Wiley, New York, USA.

    Google Scholar 

  • Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell Syst. Techn. J., 44(10):2245–2269. [doi:10.1002/j.1538-7305.1965.tb04146.x]

    Article  MATH  Google Scholar 

  • Martínez-Torres, M., 2012. A genetic search of patterns of behaviour in OSS communities. Expert Syst. Appl., 39(18):13182–13192. [doi:10.1016/j.eswa.2012.05.083]

    Article  Google Scholar 

  • Mattos Ribeiro, G., Laporte, G., 2012. An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res., 39(3):728–735. [doi:10.1016/j.cor.2011.05.005]

    Article  MathSciNet  MATH  Google Scholar 

  • Moon, I., Lee, J.H., Seong, J., 2012. Vehicle routing problem with time windows considering overtime and outsourcing vehicles. Expert Syst. Appl., 39(18):13202–13213. [doi:10.1016/j.eswa.2012.05.081]

    Article  Google Scholar 

  • Mukherjee, S., Ganguly, S., Das, S., 2012. A strategy adaptive genetic algorithm for solving the travelling salesman problem. LNCS, 7677:778–784. [doi:10.1007/978-3-642-35380-2_91]

    Google Scholar 

  • Ngueveu, S., Prins, C., Wolfler Calvo, R., 2010. An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput. Oper. Res., 37(11):1877–1885. [doi:10.1016/j.cor.2009.06.014]

    Article  MathSciNet  MATH  Google Scholar 

  • Niu, B., Zhu, Y., He, X., Wu, H., 2007. MCPSO: a multi-swarm cooperative particle swarm optimizer. Appl. Math. Comput., 185(2):1050–1062. [doi:10.1016/j.amc.2006.07.026]

    Article  MATH  Google Scholar 

  • Osaba, E., Carballedo, R., Diaz, F., Perallos, A., 2013. Analysis of the Suitability of Using Blind Crossover Operators in Genetic Algorithms for Solving Routing Problems. Proc. 8th Int. Symp. on Applied Computational Intelligence and Informatics, p.17–23.

    Google Scholar 

  • Ray, S., Bandyopadhyay, S., Pal, S., 2004. New Operators of Genetic Algorithms for Traveling Salesman Problem. Proc. 17th Int. Conf. on Pattern Recognition, p.497–500.

    Google Scholar 

  • Reinelt, G., 1991. TSPLIB: a traveling salesman problem library. ORSA J. Comput., 3(4):376–384. [doi:10.1287/ijoc.3.4.376]

    Article  MATH  Google Scholar 

  • Sarin, S.C., Sherali, H.D., Yao, L., 2011. New formulation for the high multiplicity asymmetric traveling salesman problem with application to the Chesapeake problem. Optim. Lett., 5(2):259–272. [doi:10.1007/s11590-010-0205-y]

    Article  MathSciNet  MATH  Google Scholar 

  • Schaffer, J.D., Morishima, A., 1987. An Adaptive Crossover Distribution Mechanism for Genetic Algorithms. Proc. 2nd Int. Conf. on Genetic Algorithms and Their Application, p.36–40.

    Google Scholar 

  • Spears, W.M., 1995. Adapting Crossover in Evolutionary Algorithms. Proc. Conf. on Evolutionary Programming, p.367–384.

    Google Scholar 

  • Syswerda, G., 1991. Schedule Optimization Using Genetic Algorithms. In: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, USA, p.332–349.

    Google Scholar 

  • Tsai, P.W., Pan, J.S., Liao, B.Y., Chu, S.C., 2009. Enhanced artificial bee colony optimization. Int. J. Innov. Comput. Inf. Control, 5(12):5081–5092.

    Google Scholar 

  • Wang, L., Tang, D.B., 2011. An improved adaptive genetic algorithm based on hormone modulation mechanism for job-shop scheduling problem. Expert Syst. Appl., 38(6): 7243–7250. [doi:10.1016/j.eswa.2010.12.027]

    Article  Google Scholar 

  • Whitley, D., Rana, S., Heckendorn, R.B., 1999. The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol., 7:33–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneko Osaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osaba, E., Onieva, E., Carballedo, R. et al. A multi-crossover and adaptive island based population algorithm for solving routing problems. J. Zhejiang Univ. - Sci. C 14, 815–821 (2013). https://doi.org/10.1631/jzus.C1300184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300184

Key words

CLC number