Abstract
This paper presents a ranked differential evolution (RDE) algorithm for solving the identification problem of non-linear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the performance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE algorithm performs better than the other approaches in most cases.
Similar content being viewed by others
References
Babu, B.V., Angira, R., 2006. Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng., 30(6–7):989–1002. [doi:10.1016/j.compchemeng.2005.12.020]
Brest, J., Greiner, S., Boskovic, B., et al., 2006. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput., 10(6):646–657. [doi:10.1109/TEVC.2006. 872133]
Chang, W.D., 2012. Volterra filter modeling of nonlinear discrete-time system using improved particle swarm optimization. Dig. Signal Process., 22(6):1056–1062. [doi: 10.1016/j.dsp.2012.07.005]
Cheng, C.H., Powers, E.J., 2001. Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs. IEEE Trans. Signal Process., 49(1):147–163. [doi:10.1109/78.890357]
Contan, C., Kirei, B.S., Topa, M.D., 2013. Modified NLMF adaptation of Volterra filters used for nonlinear acoustic echo cancellation. Signal Process., 93(5):1152–1161. [doi:10.1016/j.sigpro.2012.11.017]
Derrac, J., García, S., Molina, D., et al., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput., 1(1):3–18. [doi:10.1016/j.swevo.2011.02.002]
Ji, W., Gan, W.S., 2012. Identification of a parametric loud-speaker system using an adaptive Volterra filter. Appl. Acoust., 73(12):1251–1262. [doi:10.1016/j.apacoust.2012. 03.007]
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942–1948. [doi:10.1109/ICNN.1995.488968]
Krall, C., Witrisal, K., Leus, G., et al., 2008. Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans. Signal Process., 56(10):4729–4737. [doi:10.1109/TSP.2008.928167]
Kuruoğlu, E.E., 2002. Nonlinear least lp-norm filters for non-linear autoregressive α-stable processes. Dig. Signal Process., 12(1):119–142. [doi:10.1006/dspr.2001.0416]
Li, X., Yin, M., 2012. Optimal synthesis of linear antenna array with composite differential evolution algorithm. Sci. Iran., 19(6):1780–1787. [doi:10.1016/j.scient.2012.03.010]
Mleczko, M., Postema, M., Schmitz, G., 2009. Discussion of the application of finite Volterra series for the modeling of the oscillation behavior of ultrasound contrast agents. Appl. Acoust., 70(10):1363–1369. [doi:10.1016/j.apacoust. 2008.09.012]
Nam, S.W., Powers, E.J., 2003. Volterra series representation of time-frequency distributions. IEEE Trans. Signal Process., 51(6):1532–1537. [doi:10.1109/TSP.2003.811241]
Shi, Y.H., Eberhart, R.C., 1999. Empirical study of particle swarm optimization. Proc. Congress on Evolutionary Computation, p.1945–1950. [doi:10.1109/CEC.1999. 785511]
Storn, R., Price, K., 1995. Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. International Computer Science Institute, Berkeley, USA.
Sumar, R.R., Coelho, A.A.R., Coelho, L.D.S., 2010. Computational intelligence approach to PID controller design using the universal model. Inform. Sci., 180(20):3980–3991. [doi:10.1016/j.ins.2010.06.026]
Tang, H., Liao, Y.H., Cao, J.Y., et al., 2010. Fault diagnosis approach based on Volterra models. Mech. Syst. Signal Process., 24(4):1099–1113. [doi:10.1016/j.ymssp.2009. 09.001]
Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometr. Bull., 1(6):80–83.
Zhang, J.S., Zhao, H.Q., 2010. A novel adaptive bilinear filter based on pipelined architecture. Dig. Signal Process., 20(1):23–38. [doi:10.1016/j.dsp.2009.06.006]
Zou, D.X., Liu, H.K., Gao, L.Q., et al., 2011. An improved differential evolution algorithm for the task assignment problem. Eng. Appl. Artif. Intell., 24(4):616–624. [doi:10.1016/j.engappai.2010.12.002]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Science Fundamental Research Project of Jiangsu Normal University, China (No. 9212812101)
Rights and permissions
About this article
Cite this article
Zou, Dx., Gao, Lq. & Li, S. Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm. J. Zhejiang Univ. - Sci. C 15, 687–696 (2014). https://doi.org/10.1631/jzus.C1300350
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1300350
Key words
- Ranked differential evolution
- Identification problem
- Nonlinear discrete-time systems
- Volterra filter model
- Premature convergence