Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An algorithm for identifying symmetric variables in the canonical OR-coincidence algebra system

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

To simplify the process for identifying 12 types of symmetric variables in the canonical OR-coincidence (COC) algebra system, we propose a new symmetry detection algorithm based on OR-NXOR expansion. By analyzing the relationships between the coefficient matrices of sub-functions and the order coefficient subset matrices based on OR-NXOR expansion around two arbitrary logical variables, the constraint conditions of the order coefficient subset matrices are revealed for 12 types of symmetric variables. Based on the proposed constraints, the algorithm is realized by judging the order characteristic square value matrices. The proposed method avoids the transformation process from OR-NXOR expansion to AND-OR-NOT expansion, or to AND-XOR expansion, and solves the problem of completeness in the d j -map method. The application results show that, compared with traditional methods, the new algorithm is an optimal detection method in terms of applicability of the number of logical variables, detection type, and complexity of the identification process. The algorithm has been implemented in C language and tested on MCNC91 benchmarks. Experimental results show that the proposed algorithm is convenient and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, J., Jafarpour, A., Orlitsky, A., 2011. Expected query complexity of symmetric Boolean functions. Proc. 49th Annual Allerton Conf. on Communication, Control, and Computing, p.26–29. [doi:10.1109/Allerton.2011.6120145]

    Google Scholar 

  • Blais, E., Weinstein, A., Yoshida, Y., 2012. Partially symmetric functions are efficiently isomorphism-testable. Proc. IEEE 53rd Annual Symp. on Foundation of Computer Science, p.551–560. [doi:10.1109/FOCS.2012.53]

    Google Scholar 

  • Cheng, J., Chen, X., Faraj, K.M., et al., 2003. Expansion of logical function in the OR-coincidence system and the transform between it and maxterm expansion. IEE Proc.-Comput. Dig. Tech., 150(6):397–402. [doi:10.1049/ip-cdt:20030969]

    Article  Google Scholar 

  • Falkowski, B., Kannurao, S., 1999. Identification of Boolean symmetries in spectral domain of Reed-Muller transform. Electron. Lett., 35(16):1315–1316. [doi:10.1049/el:19990955]

    Article  Google Scholar 

  • Heinrich-Litan, L., Molitor, P., 2000. Least upper bounds for the size of OBDDs using symmetry properties. IEEE Trans. Comput., 49(4):360–368. [doi:10.1109/12.844348]

    Article  MathSciNet  Google Scholar 

  • Hurst, S.L., 1977. Detection of symmetries in combinatorial functions by spectral means. IEE J. Electron. Circ. Syst., 1(5):173–180.

    Article  Google Scholar 

  • Kannurao, S., Falkowski, B.J., 2002. Identification of complement single variable symmetry in Boolean functions through Walsh transform. IEEE Int. Symp. on Circuits and Systems, p.745–748. [doi:10.1109/ISCAS.2002.1010811]

    Google Scholar 

  • Kannurao, S., Falkowski, B.J., 2003. Single variable symmetry conditions in Boolean functions through Reed-Muller transform. Proc. Int. Symp. on Circuits and Systems, p.680–683. [doi:10.1109/ISCAS.2003.1206200]

    Google Scholar 

  • Kowshik, H., Kumar, P.R., 2013. Optimal computation of symmetric Boolean functions in collocated networks. IEEE J. Sel. Area Commun., 31(4):639–654. [doi:10.1109/JSAC.2013.130403]

    Article  Google Scholar 

  • Lian, Y., Li, X., Chen, X., 2005. Detection of partial symmetric functions based on tabular method. Bull. Sci. Tech., 21(2):214–217 (in Chinese).

    Google Scholar 

  • Mukhopadhyay, A., 1963. Detection of total or partial symmetry of a switching function with the use of decomposition charts. IEEE Trans. Electron. Comput., EC-12(5): 553–557. [doi:10.1109/PGEC.1963.263654]

    Article  Google Scholar 

  • Muller, D.E., 1954. Application of Boolean algebra to switching circuit design and to error detection. IRE Trans. Electron. Comput., EC-3(3):6–12. [doi:10.1109/IREPGELC.1954.6499441]

    Google Scholar 

  • Peng, J., Wu, Q., Kan, H., 2011. On symmetric Boolean functions with high algebraic immunity on even number of variables. IEEE Trans. Inform. Theory, 57(10):7205–7220. [doi:10.1109/TIT.2011.2132113]

    Article  MathSciNet  Google Scholar 

  • Rahaman, H., Das, D.K., Bhattacharya, B.B., 2003. Mapping symmetric functions to hierarchical modules for path-delay fault testability. Proc. 12th Asian Test Symp., p.284–289. [doi:10.1109/ATS.2003.1250824]

    Google Scholar 

  • Rahardja, S., Falkowski, B.J., 1998. Symmetry conditions of Boolean functions in complex Hadamard transform. Electron. Lett., 34(17):1634–1635. [doi:10.1049/el:19981164]

    Article  Google Scholar 

  • Reed, I., 1954. A class of multiple-error-correcting code and the decoding scheme. IRE Trans Inform. Theory, 4(4): 38–49. [doi:10.1109/TIT.1954.1057465]

    Article  Google Scholar 

  • Rice, J.E., Muzio, J.C., 2002. Antisymmetries in the realization of Boolean functions. IEEE Int. Symp. on Circuits and Systems, p.69–72. [doi:10.1109/ISCAS.2002.1010390]

    Google Scholar 

  • Shpilka, A., Tal, A., 2011. On the minimal Fourier degree of symmetric Boolean functions. Proc. IEEE 26th Annual Conf. on Computational Complexity, p.200–209. [doi:10.1109/CCC.2011.16]

    Google Scholar 

  • Wu, X., Chen, X., Hurst, S.L., 1982. Mapping of Reed-Muller coefficients and the minimisation of exclusive OR- switching functions. IEE Proc.-Comput. Dig. Tech., 129(1):15–20. [doi:10.1049/ip-e.1982.0004]

    Article  MathSciNet  Google Scholar 

  • Zhao, M., Lou, J., Chen, X., 2006. Denotation and application for dj-map of symmetric function. J. Zhejiang Univ. (Sci. Ed.), 33(1):62–65 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-zhong Shen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61471314 and 61271124), the National Social Science Foundation of China (No. 12AZD121), the Zhejiang Provincial Natural Science Foundation of China (No. LY13F010001), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Nos. 2013BAH27F01 and 2013BAH27F02)

ORCID: Ji-zhong SHEN, http://orcid.org/0000-0002-9031-2379

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xh., Shen, Jz. An algorithm for identifying symmetric variables in the canonical OR-coincidence algebra system. J. Zhejiang Univ. - Sci. C 15, 1174–1182 (2014). https://doi.org/10.1631/jzus.C1400093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400093

Key words

CLC number