Abstract
To simplify the process for identifying 12 types of symmetric variables in the canonical OR-coincidence (COC) algebra system, we propose a new symmetry detection algorithm based on OR-NXOR expansion. By analyzing the relationships between the coefficient matrices of sub-functions and the order coefficient subset matrices based on OR-NXOR expansion around two arbitrary logical variables, the constraint conditions of the order coefficient subset matrices are revealed for 12 types of symmetric variables. Based on the proposed constraints, the algorithm is realized by judging the order characteristic square value matrices. The proposed method avoids the transformation process from OR-NXOR expansion to AND-OR-NOT expansion, or to AND-XOR expansion, and solves the problem of completeness in the d j -map method. The application results show that, compared with traditional methods, the new algorithm is an optimal detection method in terms of applicability of the number of logical variables, detection type, and complexity of the identification process. The algorithm has been implemented in C language and tested on MCNC91 benchmarks. Experimental results show that the proposed algorithm is convenient and efficient.
Similar content being viewed by others
References
Acharya, J., Jafarpour, A., Orlitsky, A., 2011. Expected query complexity of symmetric Boolean functions. Proc. 49th Annual Allerton Conf. on Communication, Control, and Computing, p.26–29. [doi:10.1109/Allerton.2011.6120145]
Blais, E., Weinstein, A., Yoshida, Y., 2012. Partially symmetric functions are efficiently isomorphism-testable. Proc. IEEE 53rd Annual Symp. on Foundation of Computer Science, p.551–560. [doi:10.1109/FOCS.2012.53]
Cheng, J., Chen, X., Faraj, K.M., et al., 2003. Expansion of logical function in the OR-coincidence system and the transform between it and maxterm expansion. IEE Proc.-Comput. Dig. Tech., 150(6):397–402. [doi:10.1049/ip-cdt:20030969]
Falkowski, B., Kannurao, S., 1999. Identification of Boolean symmetries in spectral domain of Reed-Muller transform. Electron. Lett., 35(16):1315–1316. [doi:10.1049/el:19990955]
Heinrich-Litan, L., Molitor, P., 2000. Least upper bounds for the size of OBDDs using symmetry properties. IEEE Trans. Comput., 49(4):360–368. [doi:10.1109/12.844348]
Hurst, S.L., 1977. Detection of symmetries in combinatorial functions by spectral means. IEE J. Electron. Circ. Syst., 1(5):173–180.
Kannurao, S., Falkowski, B.J., 2002. Identification of complement single variable symmetry in Boolean functions through Walsh transform. IEEE Int. Symp. on Circuits and Systems, p.745–748. [doi:10.1109/ISCAS.2002.1010811]
Kannurao, S., Falkowski, B.J., 2003. Single variable symmetry conditions in Boolean functions through Reed-Muller transform. Proc. Int. Symp. on Circuits and Systems, p.680–683. [doi:10.1109/ISCAS.2003.1206200]
Kowshik, H., Kumar, P.R., 2013. Optimal computation of symmetric Boolean functions in collocated networks. IEEE J. Sel. Area Commun., 31(4):639–654. [doi:10.1109/JSAC.2013.130403]
Lian, Y., Li, X., Chen, X., 2005. Detection of partial symmetric functions based on tabular method. Bull. Sci. Tech., 21(2):214–217 (in Chinese).
Mukhopadhyay, A., 1963. Detection of total or partial symmetry of a switching function with the use of decomposition charts. IEEE Trans. Electron. Comput., EC-12(5): 553–557. [doi:10.1109/PGEC.1963.263654]
Muller, D.E., 1954. Application of Boolean algebra to switching circuit design and to error detection. IRE Trans. Electron. Comput., EC-3(3):6–12. [doi:10.1109/IREPGELC.1954.6499441]
Peng, J., Wu, Q., Kan, H., 2011. On symmetric Boolean functions with high algebraic immunity on even number of variables. IEEE Trans. Inform. Theory, 57(10):7205–7220. [doi:10.1109/TIT.2011.2132113]
Rahaman, H., Das, D.K., Bhattacharya, B.B., 2003. Mapping symmetric functions to hierarchical modules for path-delay fault testability. Proc. 12th Asian Test Symp., p.284–289. [doi:10.1109/ATS.2003.1250824]
Rahardja, S., Falkowski, B.J., 1998. Symmetry conditions of Boolean functions in complex Hadamard transform. Electron. Lett., 34(17):1634–1635. [doi:10.1049/el:19981164]
Reed, I., 1954. A class of multiple-error-correcting code and the decoding scheme. IRE Trans Inform. Theory, 4(4): 38–49. [doi:10.1109/TIT.1954.1057465]
Rice, J.E., Muzio, J.C., 2002. Antisymmetries in the realization of Boolean functions. IEEE Int. Symp. on Circuits and Systems, p.69–72. [doi:10.1109/ISCAS.2002.1010390]
Shpilka, A., Tal, A., 2011. On the minimal Fourier degree of symmetric Boolean functions. Proc. IEEE 26th Annual Conf. on Computational Complexity, p.200–209. [doi:10.1109/CCC.2011.16]
Wu, X., Chen, X., Hurst, S.L., 1982. Mapping of Reed-Muller coefficients and the minimisation of exclusive OR- switching functions. IEE Proc.-Comput. Dig. Tech., 129(1):15–20. [doi:10.1049/ip-e.1982.0004]
Zhao, M., Lou, J., Chen, X., 2006. Denotation and application for dj-map of symmetric function. J. Zhejiang Univ. (Sci. Ed.), 33(1):62–65 (in Chinese).
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 61471314 and 61271124), the National Social Science Foundation of China (No. 12AZD121), the Zhejiang Provincial Natural Science Foundation of China (No. LY13F010001), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Nos. 2013BAH27F01 and 2013BAH27F02)
ORCID: Ji-zhong SHEN, http://orcid.org/0000-0002-9031-2379
Rights and permissions
About this article
Cite this article
Li, Xh., Shen, Jz. An algorithm for identifying symmetric variables in the canonical OR-coincidence algebra system. J. Zhejiang Univ. - Sci. C 15, 1174–1182 (2014). https://doi.org/10.1631/jzus.C1400093
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1400093