
Mining Universal Specification Based on

Probabilistic Model

Deng Chen1, a, Yanduo Zhang2, b, Rongcun Wang3, c, Xun Li2, d, Li Peng4, e, Wei Wei1, f
1 Industrial Robot Engineering Center, Wuhan Institute of Technology, Wuhan, P.R. China

2 Hubei Provincial Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, P.R. China
3 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, P.R. China

4 Hubei Radio & TV University, Wuhan, P.R. China
a chendeng8899@hust.edu.cn
b zhangyanduo@hotmail.com

c rcwang@hust.edu.cn
d linuxfly@gmail.com

e peling9901@126.com
f weiwei@huawei-elec.com

Abstract—Class temporal specification is a kind of important

program specifications, which specifies that methods of a class

should be called in a particular sequence. Dynamic specification

mining is a promising approach to achieve this kind of

specifications automatically. However, they always infer partial

specifications, that is, the mined specifications are biased to input

programs or program execution traces. In this paper, we propose

to mine class temporal specifications based on a probabilistic

model in an online mode. Since our method can evolve mined

specifications persistently, universal specifications can be

achieved. To investigate our technique’s feasibility and

effectiveness, we implemented it in a prototype tool ISpecMiner

and used the tool to perform experiments. Experimental results

show that our method is promising to infer universal

specifications if sufficient traces are provided for mining.

Keywords- program specification mining; Markov model; class

temporal specification; dynamic analysis; program execution trace

I. INTRODUCTION

Class temporal specification (which is also referred to as
component interface [1], object behavior model [2], object
usage model [3], [4], etc.) is an important kind of program
specifications, which imposes temporal constraints regarding
the order of calls of class public methods (a public method of
class c is a method that can be accessed outside c). For example,

calling peek() on java.util.Stack without a preceding

push() gives an EmptyStackException, and calling

next() on java.util.Iterator without checking

whether there is a next element with hasNext() can result in

a NoSuchElementException. Client programs that
violate such specifications do not obtain the desired behavior
and may even crash the program [5]. However, class temporal
specification is always implicit in programs and undocumented.
Even when available, there is no guarantee of their consistence,
completeness, and correctness. Dynamic specification mining
is a promising approach to resolve the problem.

Dynamic specification mining techniques [6]-[8] run

applications with test cases generated automatically or
manually, and extract specifications from program execution
traces. Since dynamic specification mining techniques do not
require program source code as input, compared with static
specification mining [9]-[11], they can be used extensively,
especially when source code is unavailable. However, existing

dynamic specification miners (such as ADABU [2]) always
achieve partial specifications. In order to mine specifications,
these miners first run an application program and collect
program execution traces into a traces file leveraging
instrumentation techniques. Then, they take the trace file as
input and synthesize specifications based on various kinds of
sequential data mining approaches. Each run of an application
will generate a trace file and corresponding specifications. The
problem with this approach is that mined specifications may be
biased to the application program and input traces.

In this paper, we propose to mine class temporal
specifications in an online mode. Different from existing work,
our approach does not save program execution traces in any file.
It takes each method call from an execution trace sequentially
and evolves existing specifications or creates a new one. The
online approach does not require loading all traces into
memory at once. Thus, it has minimum space overhead.
Additionally, since execution traces extracted from different
application programs can be used to refine existing
specifications persistently, universal specifications may be
achieved. Another characteristic of our technique is that, we
describe class temporal specification using a probabilistic
model extended from Markov chain. Compared with
commonly used Finite State Automaton (FSA), probabilistic
model has an inherent ability to tolerate noise. Above all, it can
facilitate our online mining strategy.

To investigate the effect of our approach, we implemented
our technique in a prototype tool ISpecMiner and used it to
conduct experiments. Experimental results show that, our
approach is promising to achieve universal specifications, if
enough application programs are provided for learning.

The contributions of this paper are as follows:
(DOI reference number: 10.18293/SEKE2015-219)

mailto:%7D@hust.edu.cn
mailto:zhangyanduo@hotmail.com
mailto:peling9901@126.com

 An online approach is used to mine class temporal
specifications.

 A probabilistic model extended from Markov chain is
used to describe class temporal specifications.

 A prototype tool ISpecMiner that implements our
technique is presented.

 Experiments are performed to investigate the effect of
our method.

The rest of this paper is organized as follows: Section II
discusses related work. Section III introduces our technique.
Section IV presents our experimental results. Section V gives
our conclusions.

II. RELATED WORK

Generally, program specification mining techniques can be
categorized into static analysis approaches and dynamic
analysis approaches. These two kinds of approaches collect
method call sequences (or program execution traces) in
different manners. Static analysis approaches do not require
running application programs. They extract method call
sequences from program source code, bytecode or other
artifacts based on program static analysis techniques [12].
Dynamic analysis approaches do not take program source code
as input. They collect program execution traces by running
instrumented application programs. After that, temporal
specifications can be synthesized from method call sequences
(or program execution traces) based on sequential data mining
techniques.

Currently, a commonly used mining approach is based on

FSA. For instance, Wasylkowski et al. [1] proposed to mine
object usage models (which are finite state automata) from Java

bytecode and a tool JADET was developed. Lorenzoli et al.
[13] modeled class temporal specification using EFSM which

extends from FSM. Alur et al. [14] synthesized FSA model of
class temporal specification using L* learning algorithms
combined with model checking and abstract interpretation
techniques. These approaches work in a similar manner. First,
they split program execution traces into a set of object usage
scenarios (an object usage scenario is a method call sequence,
all method calls of which have the same receiver object). Then,
they reduce the problem of inferring temporal specifications
from a set of method call sequences (or traces) to the well
known grammar inference problem [15] by regarding method
call sequences and specifications as sentences and languages
respectively. As a result, a specification is described using one
or multiple finite state automata, where states represent states
of involved objects and transitions represent method calls.
Method calls in each path from an initial state to a final state

constitute a valid execution trace. Figure 2 shows an example

of specification for class java.io.FileOutputStream.
The specification illustrates that, to use class

FileOutputStream, we should first initiate it through
calling its constructor method. Next, we can call method

write(byte[],int,int) multiple times to write data

into the stream. Finally, method close() should be called to
close the stream.

FSA is a kind of deterministic model with inability to

tolerate noise. Ammons et al. [16] proposed to mine temporal
specifications among application programming interfaces (API)
or abstract data types (ADT) based on probabilistic finite state
automaton (PFSA). A PFSA is a nondeterministic finite
automaton (NFA), in which each edge is labeled by an abstract
interaction and weighted by how often the edge is traversed
while generating or accepting scenario strings. To mine
temporal specifications, first an off-the-shelf PFSA learner was
used to analyze scenario strings and generated a PFSA. Next,
another component corer was employed to transform PFSA to
NFA by discarding rarely-used edges and weights. The NFA
obtained was used for program verification and manual
inspection.

However, existing tools (such as Daikon [17] and

ADABU [2]) always work in a two-step mode. In the first step,
they collect execution traces from application programs using a
tracer and then store the traces in a trace file. In the next step,
they take the trace file as input and synthesize specifications.
Each run of an application will generate a trace file and
corresponding specifications. The problem with this approach
is that results of multiple runs cannot be merged. Thus, the
mined specifications are biased to the input trace file. In this
work, we mine class temporal specifications based on an online
approach. In addition, a probabilistic model extended from
Markov chain is employed to describe specifications.

III. OUR TECHNIQUE

In this section, we present our online specification mining
technique. We first provide an intuitive description of our
technique and then discuss its main characteristics in detail.

A. General Approach

The working principle of our approach is illustrated in

Figure 2. The tracer is responsible for collecting program
execution traces from application programs via instrumentation
technique. Different from existing approaches, our method

does not save execution traces into any file. The tracer

passes each method call of a trace sequentially to the online

specification miner. The online

specification miner learns class temporal
specifications based on a probabilistic model. For each class, it

S2

FileOutputStream(String) close()

write(byte[], int, int)

S3S1

Figure 1. Temporal specification of class FileOutputStream described

using FSA.

Tracer
Application

Program

Online

Specification

Miner

Specifications

Method Call

Figure 2. Working principle of our online specification mining technique.

first creates an empty specification described using the
probabilistic model. Then, it evolves the probabilistic models

persistently in terms of method calls passed by the tracer.

As we can see, our approach does not require loading all
traces into memory. It refines existing probabilistic models
based on a method call continuously. Therefore, compared with
existing approaches, our method has lower space overhead.
Furthermore, since method calls of any traces or application
programs can be used to learn specifications, universal
specifications may be achieved.

B. Collecting Program Execution Traces

To collect program execution traces, we should instrument
application programs. Many approaches and frameworks exist
to instrument Java applications statically or dynamically. We
adopt Java agent technique, which is a service provided by Java
since 1.5 [18]. Java agents can instrument classes at bytecode
level. When a class is loaded, a Java agent catches the bytecode
of this class on the fly. Then, it parses the class, injects new
bytecodes. Finally, the instrumented class is returned back to
the JVM.

To manipulate class bytecodes, we utilize a library

Javassist [19], [20]. Compared with similar tools [21], [22],

Javassist can provide the source level API, which enables
programmers to edit a class file without knowledge of Java
bytecodes. Furthermore, code can be inserted into class files in

the form of Java source text and Javassist will compile it
on the fly.

In order to collect program execution traces from an

application program, we load a Java agent at startup using the -

javaagent command-line switch. The agent will insert an

event writer into the body of interested methods. Once

the methods are called, the embedded event writer passes
all necessary information regarding the method call to the
specification miner for learning.

C. Mining Specification

1) Markov Chain with Final Probability
We mine class temporal specifications based on an

extended Markov chain with final probability (MCF) [23].
MCF extends Markov chain by introducing a probability
distribution over final states (final probability). The final
probability is similar to initial probability. The difference is
that final probability indicates which states a chance process
should end with (rather than start from). The formal definition
of MCF is given below.

DEFINITION 1 (Markov chain with final probability). A Markov

Chain with Final Probability (MCF) M is a 4-tuple (, , ,)Q    ,

where Q is a set of states,  : [0,1]Q Q  is the transition

probability function, which is always described using a
transition matrix P,  : [0,1]Q  is the probability

distribution over initial states.  : [0,1]Q  is the probability

distribution over final states. The functions  and  must

satisfy the requirements: q Q  , () 1q Q q  and

() 1q Q q  .

As shown in the definition, MCF preserves most of
characteristics of Markov chain, except violation of the

requirement: q Q  , ' (, ') 1q Q q q  , because of

introduction of final states.

Relying on MCF, we can model class temporal
specification by regarding states as methods and transitions as
temporal relationships among methods. Consider the class
temporal specification described using FSA illustrated in
Figure 1, it can be described using a MCF as shown in Figure 3.
The rounded rectangles are states labeled with method
signatures above the line. Arrows denote transitions with

transition probability labeled beside them. InitPro is the

probability of a state to be initial state. FinalPro is the
probability of a state to be final state. Actually, all the states

have properties InitPro and FinalPro. We omit the ones
whose value is zero. From the MCF, we can see that the usage

of class FileOutputStream should start with a method call

FileOutputStream(String). At the end, methods

close(), FileOutputStream(String) and

write(byte[],int,int) may be called with a
probability of 0.9, 0.05 and 0.05 respectively.

2) Online Specification Learning
Our approach learns class temporal specifications described

using MCF in an online mode. It accepts a method call of an
OUS as input and evolves existing specifications or creates a
new one.

Let R be a repository of OUSs for learning, M be the MCF
specification synthesized from R, q be a state of M, tij be a
transition from state i to j. Our learning strategy represents M
using a weighted directed graph GM, where nodes and edges
denote states and transitions respectively. In addition, the
following properties are attached to GM.

 ouscount(M) denotes the number of OUSs, which have
been used to learn M.

 emgcount(q) denotes the total occurrence number of
state (or method) q in R.

 initcount(q) denotes the count of q to be beginning
method in all the OUSs of R.

 finalcount(q) denotes the count of q to be end method
in all the OUSs of R.

 emgcount(tij) denotes the total occurrence number of
method pair (i, j) in all the OUSs of R.

At the beginning, we initialize GM to be an empty graph.
Then, we pick up a method call from an OUS in R sequentially

write(byte[], int, int)

FinalPro = 0.05

close()

FinalPro = 0.9

0.9

0.08

0.6

0.38
InitPro = 1

FinalPro = 0.05

FileOutputStream(String)

Figure 3. Class temporal specification of FileOutputStream described

using MCF

and update GM continuously until all OUSs have been
processed. For each pair of method calls q and p received
currently and previously, we update GM based on the following
strategy.

 if node q does not exist in GM, add q to GM or else
update properties associates with q.

 if edge (p, q) does not exist in GM, add (p, q) to GM or
else update properties associated with (p, q).

 if q is the end method of an OUS, update ouscount(M).

After that, we recompute probabilities  ,  and 

according to the following equations.

(,) () / ()
ij

i j emgcount t emgcount i  (1)

() () / ()q initcount q ouscount M  (2)

() () / ()q finalcount q ouscount M  (3)

In words, (,)i j is the ratio between count of transition (i, j)

and that of state i in all the OUSs used for learning. ()q is the

ratio between number of OUSs beginning with state q and the

total number of OUSs. ()q is the ratio between number of

OUSs ending with state q and the total number of OUSs.

3) Transformation from Probabilistic Model to

Deterministic Model
MCF is a kind of probabilistic model, including frequent

behaviors and infrequent behaviors. In order to use the mined
specifications for program verification, we should prune away
infrequent behaviors (noise) in the model and obtain a
deterministic model. Chen et al. [23] proposed a deterministic
model Class Interface Model (CIM) and showed that it is
straightforward to transform MCF to CIM.

DEFINITION 2 (Class interface model). A Class Interface Model

(CIM) M of class c is a 4-tuple (, , ,)M S F , where M is the

set of public methods of c, M M   is a binary relation on

M, S M is the set of beginning methods, F M is the set

of end methods. Let ,p q M be two methods, if they have

the relation  (denoted by (,)p q), it means that method p

should be called preceding q.

A CIM of class c specifies that the usage of c should start
from a method in S and then moves successively from a

method mi to mj, where (,)i jm m , finally ends in a method of

F. Any violations of the above rules are taken as errors.

In order to transform MCF to CIM, we first prune away
infrequent behaviors according to initial threshold (Ti), final
threshold (Tf) and transition threshold (Tt), which are used to
filter initial states, final states and transitions respectively.
After that, we discard all the probabilities attached with states

and transitions. In detail, given a MCF : (, , ,)Q    , we

transform  to CIM : (, , ,)M S F in terms of the

following rules:

 q Q  , add ()q to M, where :Q M  is a

function which maps a state in MCF to a method in
CIM with method names the same as state labels.

 q Q  , if ()
i

q T  , add ()q to S.

 q Q  , if ()
f

q T  , add ()q to F.

 ,i Q j Q   , if (,)
t

i j T  , we have ()i j  .

Figure 4 presents the CIM of class FileOutputStream,
which is transformed from the MCF illustrated in Figure 3
based on threshold values Ti = 0.2, Tf = 0.2, Tt = 0.2. In the
CIM, each ellipse represents a public method of the class.
Arrows denote temporal relationships between pairs of
methods. The methods with an arrow coming in from nowhere
are beginning methods and those denoted graphically by a
double ellipse are end methods. The dashed-line arrows
represent the discarded transitions of MCF. As we can see, the
previous MCF before transformation has three possible final

states FileOutputStream(String), close() and

write(byte[],int,int) with a probability of 0.9, 0.05
and 0.05 respectively. The CIM discards the first and last final
states because they are infrequent. In addition, the transition

from state FileOutputStream(String) to close() is
also pruned away due to a lower probability than Tt.

What should be noted is that results of transforming MCFs
to CIMs largely depend upon values of thresholds. If thresholds
are set too high, useful information will be discarded
mistakenly. If thresholds are set too low, noise will remain.
Even worse for our work, improper thresholds will cause
unconnected CIMs. We employ the method proposed by Chen
et al. [23] to compute threshold values, which can eliminate
noise utmostly and obtain connected CIMs.

IV. EXPERIMENTS

In order to investigate the effectiveness of our technique,

we implemented it in a prototype tool ISpecMiner and used
the tool to mine specifications from several real-world
applications. In this section, we first introduce subjects used in
our experiments. Then, we present specifications mined by

ISpecMiner.

A. Subjects

The subjects used in our experiment are listed in Table I,
which consists of four real-world Java applications. We
selected them based on the following criteria:

FileOutputStream(String) write(byte[], int, int) close()

Figure 4. Class temporal specification of FileOutputStream described

using CIM.

 Open source software. Though ISpecMiner is a
dynamic specification miner and source code is not
necessary, it is helpful for us to figure out problems
encountered in the mining process and validate results.

 Mature software. Mature software contains fewer bugs
than the unstable one. Thus, program execution traces
with less noise can be collected, which is essential for
dynamic mining tools to learn precise specifications.
There exist many methods to measure the maturity of
software. We perform the task based on a heuristic: if
an application has been maintained for a long time and
undergone a large number of revisions, we believe it is
mature.

 Large-scaled software. Large-scaled software can
provide abundant program execution traces for
learning, which is the basis of mining useful program
specifications.

 Applications coming from various domains.
Applications from various areas can provide diverse
program execution traces, which is a strong assurance
for mined specifications to be complete.

B. Mining Specifications

In this experiment, we used ISpecMiner to mine
specifications from the subject programs presented in Table I.
We ran each application once with manual input data

sequentially in the order of FreeMind, RapidMiner,

SQuirreL SQL Client and OpenProj. After that, we
examined the university of mined specifications achieved at the
end of each run. The classes that we investigated are illustrated
in Table 2. We selected these classes based on the following
considerations: (1) they are widely used in various Java
applications and well documented; (2) they are familiar to us;
and (3) since their class temporal specifications have some
distinguishing characteristics (such as the usage of a class

should end with a method call close()), we can check their
validity conveniently.

Figure 5 shows an example of mined specification for class

java.io.FileInputStream, where (a), (b), (c) and (d)
were achieved when we finished the run of subject programs

FreeMind, RapidMiner, SQuirreL SQL Client and

OpenProj respectively. As we can see, along with more
applications used for mining, the specification grew universal,
that is, more states and transitions were added to the
specifications. For example, after the run of application

TABLE I. THE SET OF SUBJECTS

Subject Version Description KLoCa # Revisions Create Date Last Update Date

FreeMind 0.9 Mind-mapping software 22 6469 March, 2001 April, 2013

RapidMiner 5.3
Environment for machine learning and data

mining
513 867 August, 2004 April, 2013

SQuirreL SQL Client 3.4 Java SQL client 253 3272 June, 2004 May, 2013

OpenProj 1.4 Project management software 120 1498 January, 2008 October, 2012

a. Kilo lines of code.

TABLE 2 INVESTIGATED CLASSES

 Class Class

1 java.io.FileInputStream 6 java.io.InputStreamReader

2 java.io.BufferedReader 7 java.io.PushbackInputStream

3 java.io.FileOutputStream 8 java.io.FileReader

4 java.io.ByteArrayOutputStream 9 java.io.PrintWriter

5 java.io.BufferedWriter 10 java.util.Stack

(a)

(b)

(c)

(d)

Figure 5. Example of mined probabilistic specification

RapidMiner, a new state

FileInputStream(FileDescriptor) and transition

<FileInputStream(File), close()> shown in Figure
5 (b) were added to the previous specification illustrated in
Figure 5 (a). Furthermore, since more applications were used to
evolve the specification, probabilities of normal and abnormal

behaviors (such as the FinalPro of state close() and that

of state FileInputStream(File)) in the specification
were increased and decreased respectively. Finally, the gap
between probabilities of useful information and noise will
become large, and then correct deterministic specifications can
be achieved by transforming the final MCF to CIM. The

specification of class FileInputStream described using
CIM is illustrated in Figure 6, which is transformed from the
final MCF under threshold values computed according to the
method by [23]. After a close investigation, the CIM is correct
and consistent with JDK documentations.

In conclusion, we used ISpecMiner to mine class
temporal specifications from four real-world Java applications
and examined specifications of 10 JDK classes. We found that
our technique can refine mined specifications persistently. In
addition, the probabilities of useful information will be
enhanced, which is beneficial for transforming probabilistic

models to correct deterministic models. ISpecMiner and
other specifications mined in our experiment can be obtained at
the URL http://ispecminer.com.

V. CONCLUSIONS

In this paper, we proposed an online program specification
mining approach based on an extended Markov model.
Different from existing approaches which work in a two-step
mode, our method does not require saving collected program
execution traces into a trace file. It first creates an empty
probabilistic model for each class, and then evolves the
probabilistic model persistently based on method calls in input
traces. Since our approach does not require loading traces into
memory at once, it has low space overhead. Additionally, if
enough applications are provided for mining, universal
specifications may be achieved.

ACKNOWLEDGMENT

Supported by Natural Science Foundation of Hubei
Province (No. 2014CFB1006).

REFERENCES

[1] A. Wasylkowski, A. Zeller, C. Lindig, Detecting object usage anomalies.
Proceedings of the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ACM , Dubrovnik, 2007.

[2] V. Dallmeier, C. Lindig, et al., Mining object behavior with ADABU.
Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, ACM, Shanghai, 2006.

[3] M. Pradel and T.R. Gross, Automatic generation of object usage
specifications from large method traces. Proceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering, IEEE Computer Society, 2009.

[4] A. Wasylkowski, Mining object usage models. Companion to the
Proceedings of the 29th International Conference on Software
Engineering, IEEE Computer Society, 2007.

[5] M. Pradel and T.R. Gross, Leveraging test generation and specification
mining for automated bug detection without false positives. Proceedings
of the 34th International Conference on Software Engineering, Zurich,
Switzerland, 2012, 288-298.

[6] M.D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, Dynamically
discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, vol. 27, 2001, 99-123.

[7] M. Gabel and Z. Su, Javert: fully automatic mining of general temporal
properties from dynamic traces. Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ACM, Atlanta, 2008.

[8] J.H. Perkins and M.D. Ernst, Efficient incremental algorithms for
dynamic detection of likely invariants. SIGSOFT Softw. Eng. Notes, vol.
29, 2004, 23-32.

[9] M.K. Ramanathan, A. Grama, and S. Jagannathan, Static specification
inference using predicate mining. SIGPLAN Not., vol. 42, 2007, 123-
134.

[10] S. Thummalapenta, and T. Xie, Alattin: mining alternative patterns for
defect detection. Automated Software Engineering, vol. 18, pp. 293-323,
2011.

[11] D. Lo, G. Ramalingam, et al., Mining quantified temporal rules:
formalism, algorithms, and evaluation. Science of Computer
Programming, vol. 77, pp. 743-759, 2012.

[12] D. Chen, R. Huang, et al., Improving static analysis performance using
rule-filtering technique. Proceedings of the 26th International
Conference on Software Engineering and Knowledge Engineering, 2014.

[13] D. Lorenzoli, L. Mariani and M. Pezz, Automatic generation of software
behavioral models. Proceedings of the 30th International Conference on
Software Engineering, ACM, Leipzig, 2008.

[14] R. Alur, P. Cerny, et al., Synthesis of Interface Specifications for Java
Classes. SIGPLAN Not., vol. 40, 2005, 98-109.

[15] J.E. Cook and A.L. Wolf, Discovering models of software processes
from event-based data. ACM Trans. Softw. Eng. Methodol., 7(3), 1998,
215-249.

[16] G. Ammons, R. Bodik and J.R. Larus, Mining specifications. SIGPLAN
Not., vol. 37, 2002, 4-16.

[17] M.D. Ernst, J.H. Perkins, et al., The Daikon system for dynamic
detection of likely invariants. Science of Computer Programming, vol.
69, 2007, 35-45.

[18] P. Caserta and O. Zendra, JBInsTrace: a tracer of Java and JRE classes
at basic-block granularity by dynamically instrumenting bytecode.
Science of Computer Programming, vol. 79, pp. 116-125, 2014.

[19] S. Chiba and M. Nishizawa, An easy-to-use toolkit for efficient Java
bytecode translators. Proceedings of the 2nd International Conference on
Generative Programming and Component Engineering, Springer-Verlag,
New York, 2003.

[20] M. Tatsubori, T. Sasaki, et al., A bytecode translator for distributed
execution of “legacy” Java software. Proceedings of the 15th European
Conference on Object-Oriented Programming, Springer-Verlag, 2001.

[21] ASM, http://asm.ow2.org.

[22] BCEL, http://commons.apache.org/proper/commons-bcel.

[23] D. Chen, R. Huang, et al., Ming class temporal specification
dynamically based on extended Markov model. International Journal of
Software Engineering and Knowledge Engineering, 2014, in press.

Figure 6. Example of mined deterministic specification

http://ispecminer.com/
http://asm.ow2.org/
http://commons.apache.org/proper/commons-bcel

