
Capture & Replay with Text-Based Reuse and
Framework Agnosticism
Filipe Arruda, Augusto Sampaio and Flavia Barros

Centro de Informática
Universidade Federal de Pernambuco

Recife, Pernambuco, Brazil
{fmca, acas, fab}@cin.ufpe.br

Abstract—Software systems need to be constantly tested, either
to verify changes or to check conformance to requirements. The
current leading approaches to automate GUI tests are coding
and the use of Capture & Replay (C&R) tools. Coding is
usually associated with (even if ad hoc) reuse strategies, but
requires from the developer specialized knowledge about the
adopted framework. On the other hand, even though C&R is
able to promote faster automation, it raises maintainability and
scalability issues in the long term due to scripts scattering and
rework for each new test case, because usually there is no
associated reuse strategy. In order to combine the benefits of
both approaches, we propose: an abstract and framework-free
representation of test actions captured during testing activities; a
text-based strategy that matches a new test case with previously
recorded test actions; and a C&R tool that implements these
concepts in the mobile context. We developed and evaluated our
strategy in the context of a partnership with Motorola Mobility,
achieving a reuse ratio up to 71% with time gains similar to
traditional C&R approaches when compared to coding.

Keywords-test automation; capture and replay; reuse; mobile
applications; natural language processing

I. INTRODUCTION

Despite the consolidation of testing as a verification activity,
it is not always feasible to complete a testing campaign due
to budget and time constraints [1]. Furthermore, when we
consider the context of mobile devices, which is considerably
different from Web and Desktop contexts, several other aspects
should be observed, such as the wide range of sensors, distinct
network providers and strong hardware dependency [2]. Thus,
a large number of test cases (TCs) tends to be necessary to
cover all these aspects, increasing the cost of the process.

Testing tasks tend to be repetitive. In Regression testing
campaigns, for instance, every new version of the software
must be tested, to verify whether it behaves as expected and
to detect errors that may have been introduced in the modified
code [3]. The simplest regression testing strategy consists of
retesting the entire software by rerunning the reference test
suite. However, due to cost constraints, alternative approaches
select and run only a subset of the test suite [4]. In this
context, test automation is seen as a way to reduce the time
spent on testing activities [5][6], by mitigating the effort
to manually execute an entire test suite. To automate test
execution, Capture & Replay (C&R) tools are an alternative
which does not demand programming skills and can be used
during a testing campaign while tests are performed manually.

DOI reference number: 10.18293/SEKE2016-228

Regression testing arguably helps to control software qual-
ity, but new TCs must be continuously created to cover new
features [7]. In some software systems, new features could
have a high demanding rate, and automating the TCs for these
features may be time consuming: 1) coding forces developers
to acquire deep knowledge of the testing framework, design
patterns etc. 2) current C&R tools require testers to execute the
entire TC at least once. Besides, C&R approaches also suffer
from high maintenance costs due to poor reuse, as noted, for
instance, in the empirical assessment conducted in [8]. These
evidences, associated to the use of an ambiguous language to
specify requirements, affect negatively a direct mapping from
test descriptions to scripts by automation tools, demanding
testers to create a structured representation to enable an
automatic and efficient transformation [9]. However, practical
experiences in testing have shown that forcing programmers
to adopt new notations is not the best option, reinforcing the
use of well-known notations and environments [10][11].

Considering this scenario, we propose an abstract, recursive,
text-based and framework-free representation, named test ac-
tion, to store information that ranges from a simple test step to
a complete TC or even a test suite. We apply text-processing
algorithms to match new TC descriptions in natural language
to previously recorded actions, reusing them to automate
new TCs. We implemented these concepts into a C&R tool:
AutoMano. Our tool was evaluated in an industrial context of
a partnership with Motorola Mobility considering two metrics:
reuse ratio and time spent to automate. As an important result
we report a reuse ratio of 71% and a significant reduction in
the overall implementation effort.

Section 2 discusses related work. Section 3 describes our
proposed representation for test actions and our approach
to reuse this representation by using string proximity and
synonym matching techniques. Section 4 describes the tool and
Section 5 details the conducted evaluation. Finally, Section 6
brings conclusions and future work.

II. RELATED WORK

Due to the vast literature on test automation, we focus here
on approaches that are closely related to our work. UIAu-
tomator1 and Espresso2 frameworks, developed by Google,

1http://developer.android.com/intl/en-us/tools/testing-support-library
2https://code.google.com/p/android-test-kit/wiki/Espresso

allow test automation through coding based on atomic actions
(e.g. click.id(text1)). However, the use of these frameworks
demands specialized knowledge from the developer. Moreover,
the automated TCs are framework dependent, and may become
outdated when they use features that have been discontin-
ued/deprecated after a framework or system update, requiring
significant code refactoring. To minimize these effects, Au-
toMano proposes an intermediate representation and a central
database that can be easily queried and updated.

Automation based on the C&R approach, on the other hand,
does not require prior knowledge and is very fast. However,
the created test scripts are typically linear, in the sense that
they do not embody alternative paths, serving only the purpose
of purely playback. Note that this characteristic restricts the
reuse of actions to compose new TCs – for instance, just a
slightly different disposal of the GUI may fail the execution
of the test, as in the RERAN tool [12].

There are also hybrid approaches that mix the C&R ap-
proach with a strategy to capture keywords from the GUI
to compose test actions. The test actions are stored as a
script to be reproduced later. MonkeyTalk [13] and Robotium
Recorder [14] are examples of frameworks that support C&R
of keywords from applications built over Android or IOS
platforms. Although they are well-consolidated commercial
tools, they do not link test actions with TC descriptions
(which is an important link we explore to ease the process of
designing and reusing TCs). Moreover, even though we focus
our comparison on C&R versus coding approaches for test
automation, there are also other well-known strategies such as
model-based testing (an example is MobiGUITAR [15]) and
GUI ripping (see, for instance, [16]).

Our work was also inspired by an empirical analysis seen in
[8], which shows that the development of test suites requires
more time when programmable testing approaches are adopted
(between 32% and 112%) compared to C&R approaches, how-
ever it is more time-saving over successive releases, because it
is easier to maintain. Although these results were obtained in a
different context (web), we assume that they could be similar
or even more prominent in the mobile context. This happens
because no reuse strategy are applied in C&R artifacts, while
coded tests benefit from design patterns such as Page Objects.
In our strategy we take advantage of the fast development
observed in C&R tools without suffering maintenance issues
raised from this approach by applying a reuse strategy.

Concerning TC generation from natural language require-
ments, NAT2TEST [17] presents a strategy that maps re-
quirements written in natural language into TCs using a
formal notation for requirements specification (SCR) as an
intermediate formalism. Another example is presented in [18],
in which requirements must be written in a more restrictive
way as a strict if-then sentence template. Although these
approaches aim to simplify the generation of TCs, these works:
(1) severely restrict the input to a subset of a given natural
language that must obey a particular grammar; (2) do not
consider the reuse of test artifacts; (3) are not applicable to
C&R approaches.

III. AUTOMATION STRATEGY

Our automation strategy is based on C&R, with focus
on improving previous approaches particularly concerning
potentializing reuse. Also, the input to our strategy is a TC
written in free Natural Language (NL), particularly English;
as far as we are aware, currently there is no strategy that
automatically translates TCs written in (an unconstrained) NL
into scripts of an automation framework, exploring reuse.

As previously discussed, the development of automated
TCs, via C&R, usually results in platform dependent and hard-
to-maintain code. For instance, considering the automation of a
TC illustrated in Figure III, a direct mapping to scripts, besides
the difficulty to find a connection between these representa-
tions, also hinders reuse possibilities. One could argue that,
instead of mapping a TC to a single script, modularization
could be explored by assigning a script to each step and
reuse them in other TCs; but this is not sufficient to represent
hierarchical steps. In addition, a direct mapping also makes
scripts framework-dependent.

TC - Check if
a email can be
sent

@Test
p u b l i c vo id t e s t S e n d E m a i l (){

UiDevice d e v i c e = UiDevice
. g e t I n s t a n c e (i n s t r u m e n t a t i o n) ;

d e v i c e . pressHome () ;
U iOb jec t2 apps = d e v i c e . f i n d O b j e c t (

By . d e s c r i p t i o n (” Apps ”)) ;
apps . c l i c k () ;
[. . .]

}

Fig. 1. Typical TC automation based on Capture & Replay

We propose the use of a middle-level representation, called
test action, that fills the granularity gap between NL descrip-
tions and GUI operations by supporting abstraction layers,
composition and code-level interpretation. In this way, besides
allowing actions to be retrieved, composed and reused by the
test description itself, it is also possible to mitigate incon-
sistencies due to framework changes (deprecation, switched
platform, business decision etc.), as detailed next.

A. Overall Architecture

In order to provide a better representation of the underlying
abstractions of NL descriptions, test actions can be represented
as recursive structures, inspired by the composite design
pattern [19] illustrated in Figure 2 (a), supporting layers of
abstractions that allow one to represent atomic operations, test
steps, TCs or even test suites using the same structure.

It is worth mentioning that the high-level descriptions of
atomic operations are automatically derived from screen inter-
actions, while in composed test actions these NL descriptions
are TC titles, step descriptions etc. Only atomic operations
(that are predefined) are mapped to code-level scripts by using
an interpreter to a specific framework (Figure 2 (b)), which can
be dynamically instantiated using the factory method pattern
[19]. To illustrate the framework agnosticism, we consider (in
Figure 2 (b)) two frameworks: UiAutomator and MonkeyTalk
with their respective interpreters.

Test Actions

Composition Atomic

Interpreter
< create >

Command

UiAutomatorInterp UiAutomatorCmd

MonkeyTalkInterp MonkeyTalkCmd

Fig. 2. Overall architecture

For instance, given the TC illustrated in Figure III to check
whether an email can be sent, composed by several steps, the
test action that represents this TC can now be structured as
a composition of other test actions (each one representing a
step), which in turn could also be composed by several screen
interactions (represented as atomic test actions), as presented
in Figure 3. We potentialise the reuse possibilities and provide
the code script by only interpreting the atomic actions.

TC - Check if email
can be sent

1 - Go to Home
Screen;
2 - Open Email App;

[...]

- Press ”Home” Button u i D e v i c e . pressHome () ;

Open Email App

Open Apps Tray

- Press ”Apps” View

u i D e v i c e . f i n d O b j e c t (
By . s e l e c t o r (” Apps ”)

) . c l i c k () ;

- Press ”Email” View

- [...]
u i D e v i c e . f i n d O b j e c t (

By . s e l e c t o r (” Email ”)
) . c l i c k () ;

Fig. 3. Test case automation using hierarchical test actions

B. Reuse

In the beginning of an automation process, there are no
previously created TCs, so there is no opportunity for reuse.
However, as TCs are progressively automated, test actions are
stored (typically in a database, as discussed in the next section)
and can then be retrieved and reused in the automation of new
TCs. Therefore, instead of capturing interactions all over again
for every new TC, we employ an algorithm to match test steps
written in English with the stored test actions, mitigating C&R
issues regarding reuse, as noted in the empirical assessment
conducted by [8]. These test actions may be organized and
composed in any order to create others yet more complex ones.

The matching process is divided into three main operations:
sentence tokenization; synonyms retrieval from the WordNet
knowledge database [20]; and finally ranking the test actions
using synonym equivalence and string proximity. The whole
matching process is detailed in Algorithm 1. The function
described as CalculateSimilarity is used to search test actions
that match each step of TC description written in natural
language. This function receives a test step and a description
of a given test action as arguments, both written in English.
Then, at lines 2 and 3, the sentences are split, also discarding
some stop words. Then, beginning at line 5, each word of a test
step (kwTS) is compared to each word of a test action (kwAD)
and its synonyms retrieved from WordNet by verifying the
Levenshtein distance [21]; for each successful matching (given

a threshold), the similarity level is increased. This function is
executed for all stored action textual descriptions to find the
best similarity level. Finally, if no test action found is similar
enough (for a given threshold), the user must enter or create
one specific test action for the test step being processed. For
instance, if we consider a given TC step: ”Compose a POP
mail”, the matching process is illustrated in Figure 4.

Algorithm 1 Calculating similarity using a knowledge-based
approach

1: function CALCULATESIMILARITY(testStep, actionDescription)
2: kwTS ← GETKEYWORDS(testStep)
3: kwAD ← GETKEYWORDS(actionDescription)
4: similarity ← 0
5: for i ← 0..SIZE(kwTS) do
6: synonyms ← GETSYNONYMS(kwTS[i])
7: for j ← 0..SIZE(kwAD) do
8: kwContains ← CONTAINS(synonyms[s], kwAD[j])
9: kwProximity ← DISTANCE(synonyms[s], kwAD[j])

10: if kwContains OR kwProximity < threshold then
11: similarity ← similarity + 1/(COUNT(kwTS))
12: break
13: end if
14: end for
15: end for
16: return similarity
17: end function

Compose,
POP, mail

WordNet

Publish
Write

...
Mail
Email

...

Turn on WiFi
Change email account

Write an email
Change orientation

...

0%

33%
66%
0%

Fig. 4. Matching process

IV. IMPLEMENTATION

We implemented a tool, called AutoMano, which is able to
capture user interactions on the phone and store them as test
actions. It is worth noting that the application UI is web-based
and this matching is transparent to the user. In summary, as in
other C&R tools, a tester is able to automate an entire test suite
without any programming skills during her common activities,
reducing both time and effort to automate tests. Unlike other
tools, however, it is possible to easily automate new TCs by
just typing their descriptions (which potentially match actions
previously recorded), favoring reuse because all actions are
expressed as English sentences.

A. Capture & Replay

As observed in traditional C&R tools, AutoMano also cap-
tures and stores user inputs to reproduce them later. However,
instead of capturing low-level events such as ”clicking on
(x,y)”, our tool listens to the Android accessibility events3,
which give us high-level descriptions of what was performed
on the device. In this way we mitigate screen compatibility
issues (due to different screen sizes), besides giving a more
legible way to present information to the user. For instance,
instead of ”click on point (x,y)”, our tool captures ”click on

3http://developer.android.com/intl/en-us/reference/android/view/ accessibil-
ity/AccessibilityEvent.html

button with description ’Apps’”. Also, we created a custom
keyboard that we install before capturing to get what the user
is typing. Additionally, the user can create variables to reuse
the same action in other situations, as shown in Figure 5.

Fig. 5. Capture screen (AutoMano)

Then, after capturing a set of interactions, the user should
give a representative description in English before storing them
in a database (so these interactions could be retrieved by the
algorithm presented in the previous section). The database
used was Neo4j4 because it enables us to make graph queries
which are useful to find equivalent subgraphs and analyze
transitive connections among test actions. An example of how
a test action would be represented is shown in Figure 6.

Fig. 6. How test actions are represented in Neo4j

Afterwards, to execute the test actions previously recorded,
we first install an interpreter that reads test actions (JSON)
and calls the corresponding framework (e.g., UiAutomator)
methods. Then, the test action is retrieved from the database,
converted to JSON and sent to device via socket communi-
cation. Subsequently, the interpreter translates each command
of a test action, executes it and sends back the action results.
Currently, our interpreter generates scripts for two frameworks:
UiAutomator and a proprietary one. It is important to em-
phasize, however, that AutoMano can be easily tailored to
use any other automation framework, since all commands are
dynamically linked to scripts of a chosen framework. Finally,
the results collected are shown on an HTML page to the user.

V. EVALUATION

In order to evaluate the effectiveness of our approach, we
conducted an experiment in which we measured the time spent
in test automation by developers coding scripts and that spent

4http://neo4j.com/

by testers using AutoMano for C&R. In addition, we carried
out a longitudinal analysis to investigate the evolution of the
reuse ratio along a real-world automation task assigned to a
tester in a project within Motorola Mobility. In this section we
summarize the research questions, design choices, results and
threats to validity.

A. Research Questions and Metrics

As a measurement mechanism, we adopted the GQM (Goal,
Question, Metric) approach [22] to structure our evaluation in
conceptual, operational and quantitative levels.

Study Main Goal: Verify whether our proposed C&R
approach potentialise the reuse ratio of test actions during an
automation task, while still being faster than coding.

[RQ1] Research Question 1: Is there indeed a reduction
of the time spent to automate TCs via C&R with AutoMano
when compared to coding?

Metric: Time spent to automate a set of TCs subtracting
the execution and preparation time.

[RQ2] Research Question 2: Does our approach provide
a satisfactory reuse ratio during automation?

Metric: Percentage of reused test actions: number of test
steps retrieved from the database divided by the total number
of test steps.

B. RQ1 - Design, Execution and Results

To obtain the metric associated with RQ1, we conducted an
experiment that aimed to compare the time spent by developers
to automate a given set of TCs with the time spent by testers
to automate the same TCs via C&R, using AutoMano. These
TCs were chosen according to the following criteria:
• They should be simple enough to mitigate the issue of

different expertise levels of developers and testers.
• They should address recently added features, preferably

not known by participants beforehand (to neutralize the
testers prior knowledge).

• They must be real TCs, written by test designers under
the same principles.

To conduct a precise computation of the time aspect, we
prepared some guidelines and rules to the participants:
• Immediately before starting the automation activity, start

the chronometer;
• Before asking for help, pause the chronometer and only

resume it when the issue is solved;
• Pause the chronometer after finishing the automation of

each TC, since the execution time to check if there are
no errors should not be taken into account.

Regarding the selection of the participants, we chose 10
developers from an automation team working for Motorola
Mobility whose experience ranged from preliminary to sub-
stantial. The project managers also assigned 10 testers with
varied experience levels, who were trained for about 20
minutes on how to use the AutoMano tool. However, we ran
the experiment with 7 available developers and 10 testers.

To ensure a proper execution, two assistants were assigned
to supervise the experiment, enforcing the guidelines and

assuring that the TCs were correctly automated. Whenever a
problem was detected, the chronometer was stopped until the
issue was fixed. Participants were not allowed to use functions
or actions created prior to the current evaluation process. This
way, TCs had to be automated from scratch. Additionally, it
is worth mentioning that all participants used the same device
and software version, and developers were instructed to use
the same automation framework.

We protected the identity of the participants, to avoid any
kind of retaliation due to performance indicators. As such, we
assured to only share consolidated results.

542Average
AutoMano

369Median

1139Average
Coding

840Median

0 300 600 900 1200
Seconds

Fig. 7. Results: Comparing time to automate (AutoMano x Coding)

As shown in Figure 7, coding required an average of 101%
more time to automate when compared to AutoMano, which
actually is in accordance to the results achieved by Leotta et.
al. (2013) [8], besides providing us a concrete evidence that
AutoMano is faster than coding under these circumstances. To
reach this outcome, we disregarded the values with more than
1.5 standard deviations from the mean, which excluded the
highest automation time from both groups.

C. RQ2 - Design, Execution and Results

Concerning the RQ2, we prepared some artifacts to analyze
the reuse ratio of test actions during a real task assignment
in a Motorola Mobility project. For 3 weeks, we observed
a novice tester using AutoMano to automate a set of TCs.
Before we started to observe the tester, he was trained for 1
week on minor tasks using AutoMano, so that he could grasp
the basic concepts related to testing activities, automation
and the AutoMano itself. The aim was to provide a fairly
meaningful analysis. The tester was asked to register each test
step automated with AutoMano, informing if it was necessary
to record the interactions or if there was a correspondent action
already recorded in the database.

To track the reuse ratio evolution, we collected the percent-
age of reused actions over a time period. Then we observed
how many actions were reused relative to the number of TCs
automated. Figure 8 shows how reuse improved along the
automation task. In general, as the number of TCs increased,
the reuse ratio increased as well, reaching 71% with 31 TCs.

D. Threats to Validity

We discuss here the threats to validity of our evaluation.
Conclusion Validity: This work and evaluation were based
on the assumption that it is reasonable to compare the time
to automate TCs between two different groups: developers

0 5 10 15 20 25 30 35
0

20

40

60

70

80

100

Test cases

R
eu

se
ra

tio

Reuse improvement

Fig. 8. Longitudinal analysis: Reuse ratio

and testers. We could have designed an experiment with only
developers, but it would not have any practical or meaningful
results since we seek alternatives to ease the burden of
developers to automate and maintain a large set of TCs (by
assigning them to testers, with no programming background,
that could automate them even faster). Concerning the reuse
strategy, we assumed that TCs have descriptions written in
English and could be broken down into steps.
Internal Validity: Regarding the reuse ratio, the tester may
have chosen only a subset of similar TCs, boosting the percent-
age of reused actions. If TCs from different products/projects
are chosen, the reuse ratio might be distinct. However, we
believe that as the number of TCs increase, we would notice
a similar result. Concerning the experiment (RQ1), some par-
ticipants could have measured a wrong time because they were
responsible to register the time. For subsequent experiments,
we intend to use tools that measure the time automatically
based on key events. Also, because they were in working time
and could have other appointments, some may have automated
in a different pace if comparing to a real task.
External Validity: We conducted the analysis with artifacts
and personal from a real project. However, products and TCs
may vary from project to project, even the way to write
TCs, which could affect our algorithm to reuse test actions.
To mitigate this, we considered a traditional way to present
TCs (description, steps and expected results) that we believe
to be flexible enough to apply on most software projects.
It is worth mentioning, however, that we only considered
tests for the Android platform that could be automated by
just screen interactions and were visually checkable. But the
strategy proposed in this paper could be easily tested in other
platforms (web, mobile) by extending the capture & replay
modules, since the reuse strategy is framework-agnostic. Even
so, regarding the time to automate, we got similar results to
Leotta et. al. (2013) [8] experiment with web frameworks.

VI. CONCLUSIONS AND FUTURE WORK

Test automation based on coding scripts raises some issues:
(1) it requires hiring specialized people to automate TCs;
(2) code maintenance is not an easy task and it is often
required, mainly because it is UI-based; (3) every new TC
must be coded by a developer, even when it is similar to

previous ones. To deal with the two former issues, we proposed
here a stragety and a tool that captures manual interactions
made by testers, and converts them into an intermediate
representation (test action) which is framework-independent
and can be easily mapped into any automation framework.
Only at runtime we interpret the framework script associated
with atomic actions. Currently, the tool interprets scripts for
UiAutomator and for a proprietary framework, and has been
applied this to generate tests for verifying mobile devices in
an industrial context of a partnership with Motorola Mobility.
Because testers themselves can record their interactions, a
dedicated automation team is not essential anymore; this eases
maintenance because the testers only need to record new
interactions on the device. To overcome the third issue, the
tool is also capable of translating new TC descriptions into
framework scripts by matching each test step with a test action
previously saved in a database; as such, the more actions are
stored, the better is the reuse ratio, consequently reducing the
effort required to automate new TCs.

Unlike other capture & replay tools, AutoMano provides
a straightforward way to reuse actions previously recorded
by users, searching the database for actions whose associated
descriptions are similar to the user input. The evaluation of
this strategy brought evidences of a reuse ratio up to 71%,
without drawbacks in the automation pace when compared to
other capture & replay approaches.

Building upon the results already achieved, our work creates
opportunity for several future research directions.
Matching improvements: To improve the matching success
rate, we intend to adopt a controlled natural language to
describe TCs, instead of using free English. We expect that
a controlled grammar will gradually become representative
enough to be the test action structure itself. Also, ontology-
based representations for automation [23] could be used to
express semantic relationships and context.
Capture and Replay improvements: As mobile devices fre-
quently present new input sensors, it is important to cover
these sensors by capturing interactions on new ones like voice
or gesture motions. Regarding maintenance, we plan to adopt
more flexible algorithms that are aware of UI changes, in order
to handle minor UI changes.
Exploratory testing: An interesting topic for future inves-
tigation is the automatic generation of a large number of
new TCs by combining test actions stored in the database,
for the purpose of exploratory testing. This can be based
both on a random strategy or on a more elaborate guided
approach that only combines actions that are compatible. A
notion of compatibility can be characterized by extending the
structure of test actions with pre- and postconditions so that
the sequential composition of two actions is meaningful only
if the postcondition of the first action logically implies the
precondition of the second.

ACKNOWLEDGMENT

This work is partially supported by CNPq (Grant
132329/2015-8) and Motorola Mobility. We thank Rodrigo

Folha and Cesar Albuquerque for help with implementation;
Benicio Goulart, Alice Arashiro, Guilherme Almeida, Virgı́nia
Viana and Dacio Mendonça for useful comments and follow-
up; and for all testers who gave us feedback.

REFERENCES

[1] I. Burnstein, Practical software testing: a process-oriented approach.
Springer Science & Business Media, 2003.

[2] R. Chandra, B. F. Karlsson, N. Lane, C.-J. M. Liang, S. Nath, J. Padhye,
L. Ravindranath, and F. Zhao, “Towards scalable automated mobile app
testing,” Technical Report MSR-TR-2014-44, Tech. Rep., 2014.

[3] H. K. Leung and L. White, “Insights into regression testing [software
testing],” in Software Maintenance, 1989., Proceedings., Conference on.
IEEE, 1989, pp. 60–69.

[4] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel,
“An empirical study of regression test selection techniques,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 10,
no. 2, pp. 184–208, 2001.

[5] B. Beizer, Software testing techniques. Dreamtech Press, 2002.
[6] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing

based on java predicates,” in ACM SIGSOFT Software Engineering
Notes, vol. 27, no. 4. ACM, 2002, pp. 123–133.

[7] C.-T. Lin, C.-D. Chen, C.-S. Tsai, and G. M. Kapfhammer, “History-
based test case prioritization with software version awareness,” in
Engineering of Complex Computer Systems (ICECCS), 2013 18th In-
ternational Conference on. IEEE, 2013, pp. 171–172.

[8] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution,” in Reverse Engineering (WCRE), 2013 20th Working Con-
ference on, Oct 2013, pp. 272–281.

[9] T. J. Ostrand and M. J. Balcer, “The category-partition method for
specifying and generating fuctional tests,” Communications of the ACM,
vol. 31, no. 6, pp. 676–686, 1988.

[10] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 85–103.

[11] W. Grieskamp, “Multi-paradigmatic model-based testing,” in Formal
Approaches to Software Testing and Runtime Verification. Springer,
2006, pp. 1–19.

[12] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and
touch-sensitive record and replay for android,” in Software Engineering
(ICSE), 2013 35th International Conference on. IEEE, 2013, pp. 72–81.

[13] CloudMonkey. (2013) Monkeytalk. [Online]. Available:
https://www.cloudmonkeymobile.com/monkeytalk

[14] Robotium. (2013) Robotium recorder. [Online]. Available:
http://http://robotium.com/

[15] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
Software, IEEE, vol. 32, no. 5, pp. 53–59, 2015.

[16] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse
engineering of graphical user interfaces for testing,” in null. IEEE,
2003, p. 260.

[17] G. Carvalho, D. Falcão, F. Barros, A. Sampaio, A. Mota, L. Motta,
and M. Blackburn, “Nat2testscr: Test case generation from natural
language requirements based on scr specifications,” Science of Computer
Programming, vol. 95, pp. 275–297, 2014.

[18] M. Esser and P. Struss, “Obtaining models for test generation from
natural-language-like functional specifications,” Proceedings of DX,
vol. 7, pp. 75–82, 2007.

[19] E. Gamma, Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[20] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[21] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[22] V. Caldiera and H. D. Rombach, “The goal question metric approach,”
Encyclopedia of software engineering, vol. 2, no. 1994, pp. 528–532,
1994.

[23] S. Paydar and M. Kahani, “Ontology-based web application testing,” in
Novel Algorithms and Techniques in Telecommunications and Network-
ing. Springer, 2010, pp. 23–27.

