An empirical study on the influence of context in computing thresholds for
Chidamber and Kemerer metrics

Leonardo C. Santos, Renata Saraiva, Mirko Perkusich, Hyggo O. Almeida and Angelo Perkusich

Federal University of Campina Grande, Campina Grande, Brazil
{leonardo.santos, renata.saraiva, mirko.perkusich, hyggo, perkusic } @embedded.ufcg.edu.br

Abstract

Software metrics have a fundamental role in the pro-
cess of software quality management. However, in most
cases, they are only used to quantify attributes, not sup-
porting decision-making during the software life cycle. To
support decision-making, it is necessary to give them by
defining thresholds. In the literature, several approaches
have been proposed with this purpose. On the other hand,
most of them do not consider context factors such as the
domain. Given this, in this paper, we evaluate if context
factors influence the definition of thresholds for software
metrics. Our work is restricted to Chidamber and Kemerer
metrics, due to availability of data. We conducted an em-
pirical study composed of two quasi-experiments. Each
quasi-experiment uses an approach presented in the liter-
ature to define thresholds for software metrics, with the de-
fined thresholds as the dependent variable. As the factor, we
used a variable with two possible treatments: to consider
the context or not. To define context, we used factors pre-
sented in the literature. As the objects of study, we used the
source code of fifteen Java-based open-source projects. For
measurement purposes, we used the six original Chidamber
and Kemerer metrics. For both quasi-experiments, the ac-
curacy of the definition of thresholds improved by consider-
ing the context. Therefore, we concluded that context fac-
tors influence the definition of the threshold for Chidamber
and Kemerer metrics, which is an indicator that it influences
other software metrics.

Software measurement; thresholds derivation; CK met-
rics.

1. Introduction

Software metrics is a collective term used to describe the
wide range of activities concerning measurement in soft-
ware engineering [1]. The reasons to use software metrics
are: (i) to assist in project planning; (ii) to determine the
strengths and weaknesses of the process and the product;
and (iii) to evaluate the impact of a used particular tech-

DOI reference number: 10.18293/SEKE2017-044

nique. In practice, the use of metrics in large organizations
such as HP, Motorola and NASA was evaluated by Ordonez
and Haddad [2]. The result of this study indicated that met-
rics, when used early in the software development cycle,
help to correct requirement failures and prevent errors.

Despite the potential benefits of metrics, in most cases,
they are only used to quantify attributes and do not sup-
port decision-making [3]. According to Ferreira et al. [4],
this has been identified as one of the reasons why metrics
are not effectively used in industry. To maximize the use
of metrics and support their interpretation, it is essential to
define significant thresholds.

Many approaches to identify thresholds have been pro-
posed in the literature. Ferreira et al. [4] used the EasyFit
tool [5] to find the distribution most similar to the distribu-
tion of the metric. From percentile cuts, the categorization
of thresholds was defined as good, moderate and bad. Fou-
cault et al. [6] and Alves et al. [3] also used percentile cuts
to compute thresholds. Foucault et al. [6] used a statisti-
cal analysis called bootstrap [7] to estimate the confidence
interval of the percentile.

Receiver Operating Characteristic (ROC) curves were
used by Shatnawi et al. [8] to associate metric to errors and
find the threshold that provides better justification for these
errors. In 2015, Shatnawi [9] proposed an approach that
performs a logarithmic transformation on the data to reduce
the skewness. In this approach, thresholds were extracted
from the mean and standard deviation of the distribution re-
lated to the metric. Most of the works, such as Ferreira et
al. [4], Alves et al. [3] and Shatnawi et al. [8], did not con-
sider context variables to define the thresholds. On the other
hand, Zhang et al. [10], in an empirical study that collected
data from 320 software systems, demonstrated that the dis-
tribution of maintainability metrics values are influenced
by context variables such as the application domain, the
programming language and the number of changes made
during the software development, giving indications that
thresholds can also be influenced by these variables.

In this study, we hypothesize that context variables influ-
ence the software metrics’ threshold, given that the distri-

bution of a metric influences its interpretation (i.e., thresh-
olds). In this paper, we investigate if context variables in-
fluence the accuracy of the definition of software metrics’
thresholds. With this purpose, we conducted an empiri-
cal study composed of two quasi-experiments. Each quasi-
experiment uses a solution proposed in the literature to de-
fine thresholds for software metrics, with the calculated
thresholds as the dependent variable.

Based on the number of referrals, we used the ap-
proaches proposed by Foucault et al. [6] and by Shat-
nawi [9]. As the factor of the study, we used a variable with
two possible treatments: to consider the context or not. As
the objects of study, we used the source code of fifteen Java-
based open-source projects. For measurement purposes, we
used the six original Chidamber and Kemerer (CK) met-
rics [11].

The remainder of this paper is organized as follows: in
Section 2, we present the background regarding software
metrics and thresholds derivation. In Section 3, we describe
the empirical study design. In Section 4, we present the
analysis and results. In Section 5, we present the threats to
validity. Finally, in Section 6, we present our conclusions
and future work.

2. Background

2.1. Chidamber and Kemerer Metrics

Metrics are used as a control instrument in the software
development and maintenance process. Since 1970, hun-
dreds of metrics have been proposed in the literature [12].
For instance, Chidamber and Kemerer [11] proposed a set of
object-oriented metrics that is widely used by researchers,
which are presented as follows:

* Coupling Between Object classes (CBO): the coupling
of a class is characterized by the number of relation-
ships that a class has (i. e. counted for method calls,
field accesses, inheritance, method arguments, return
types, and exceptions). High coupling indicates a low
reuse and a rise on the sensitivity to changes;

e Depth of Inheritance Tree (DIT): this metric calculates
the depth of the inheritance tree (i.e., the distance be-
tween a class and its root class). It indicates that the
deeper a class is in a class hierarchy, the more methods
are inherited. Thus, the class becomes more complex
and prone to errors;

* Number Of Children (NOC): represents the number
of subclasses that inherit characteristics from a given
class. This information provides evidence of the im-
portance of the class importance to the project. A high
value for this metric may correspond to inappropri-
ate abstractions or mistakes related to inheritance con-
cepts;

* Response For a Class (RFC): refers to the number of
methods that can be executed by a class instance in
response to an event or a received message. The higher
the value, the greater the complexity of its testing and
maintenance;

* Lack of Cohesion in Methods (LCOM): refers to the
number of pairs of methods of a particular class in
which the similarity is zero, minus the number of pairs
of methods in which the similarity is nonzero. The
similarity is calculated by the common use of variables
of a class instance. Thus, a high value means that the
class is not cohesive.

» Weighted Methods per Class (WMC): refers of the sum
of the complexities of the methods of a given class.
The higher the value, the more complex the class is.

Many studies have verified the relationship between CK
metrics and faults in classes. In a systematic review, Ju-
reczko and Madeyski [13] analyzed their effects on fault
proneness. They showed that object-oriented metrics are
better at finding fault than procedural metrics. Furthermore,
they claim that CK metrics form the most common set of
metrics to predict failures in classes. In Table 1, we de-
tail the effect of CK metrics in a class’ fault-proneness as
presented in Shatnawi [9]. The first column corresponds
to CK metrics. Second and third columns correspond to
the quantity of research papers that present the negative and
positive impact of CK metrics in a class’ fault-proneness.
Finally, the last column corresponds to the research papers
that present data refuting the hypothesis that there is a rela-
tionship between CK metrics and faults.

Table 1: A summary of the CK metrics’ impact in fault
proneness [13, 9].

Metric || Positive Negative Not significant
WMC 12 0 0

DIT 4 2 6

NOC 2 3 4

CBO 11 0 1

RFC 11 0 0
LCOM 6 0 1

2.2. Thresholds Definition

The effective use of software metrics is hampered by
the lack of significant thresholds [3]. In the literature,
few metrics have defined thresholds. Furthermore, many
researchers have proposed different approaches to define
them [3, 4, 6, 14, 15, 9, 16, 8, 10].

Alves et al. [3] present a method that determines thresh-
old empirically from measurement data. (i.e., benchmark-
ing). The method is based on statistical properties of the

metric such as scale and distribution. To evaluate their ap-
proach, they collected data from 100 object-oriented soft-
ware systems to calculate thresholds, which were success-
fully used to assist on software analysis, benchmarking and
certification. The main risk of such a solution is to use
thresholds to assist decision-making that were calculated
for a different context.

In Séanchez-Gonzdlez et al. [16], an empirical study
was performed to evaluate the effectiveness of two thresh-
old definition techniques: ROC curves [8] and the Ben-
der method [17] to define thresholds. As objects of study,
they used measures for business process models. They con-
cluded that ROC curves obtain more accurate thresholds.

In the works of Oliveira et al. [15, 14], the concept of rel-
ative thresholds is proposed as well as a tool for extracting
these thresholds. Their approach handles the heavy-tailored
distribution of source code metrics by complementing abso-
lute thresholds with a percentage of software code entities
that must follow it. The technique is validated with an in-
dustrial case study. As Alves et al. [3], its limitation is that
the calculated threshold and percentage might be dependent
on the context.

In Foucault et al. [6], a solution based on statistical meth-
ods was presented. This approach is based on (i) double
sampling [18] to randomly selects projects samples; and (ii)
bootstrap to estimate the thresholds based on quartiles. De-
spite the potential of this approach, the validation process
was limited to a test to identify the best configuration for
the approach itself since, according to the authors, the two
statistical methods are widely used.

In Shatnawi [9], a solution based on logarithmic transfor-
mation was presented. In this approach, initially, the data
is transformed using the natural log, leaving the symmet-
ric data thus closer to a normal distribution. Afterward, a
temporary reference value (7”) is collected using the mean
(M) and standard deviation (SD) so that 7/ = M + SD or
T’ = M — SD. Finally, the T" is converted to the original
distribution by using the exponent function of 7", generat-
ing the final reference value.

3. Study Design

To evaluate if context factors influence the definition of
software quality metrics’ thresholds, we performed an em-
pirical study composed of two quasi-experiments. Each
quasi-experiment used one solution to define the thresholds
of software metrics presented in the literature. The solutions
used are the ones presented by Shatnawi [9] and Foucault et
al. [6]. The defined thresholds are the dependent variable.
As the factor, we used a variable with two possible treat-
ments: to consider the context or not. The context factors
were defined according to Zhang et al. [10]. As database,
we used six CK metrics extracted of the source code of fif-
teen Java-based open-source projects.

3.1. Scope

The goal of the study is to evaluate if context factors in-
fluence the definition of software quality metrics’ threshold
in the context of Chidamber and Kemerer metrics. There-
fore, we addressed the following research question:

RQ: Does considering context factors improve the
quality of the definition of software quality metrics’ thresh-
olds?

Given the research question, we defined the following
informal hypotheses:

HO: The results are the same or worse.

HA: The results are better.

3.2. Objects of study

For both quasi-experiments, we used the same data as
Shatnawi [9], which is composed of several releases of fif-
teen open-source projects written in the Java programming
language. We classified each project according to its appli-
cation domain and the number of changes given the defini-
tions presented in Zhang et al. [10]. The application domain
of 73% of the projects is software development, 13% is the
development of build tools, and 13% is the development
of frameworks. For the number of changes, we used the
thresholds defined by Zhang et al. [10] given the number of
commits to the repository: 12 as very small; 123 as small;
413 as medium; 1142 as large; and 94853 as extra large.

3.3. Variables and treatment

In this study, we have two independent variables: (i) the
technique used to define the thresholds and (ii) the context
usage. As already stated, for the first variable (i), we used
two options: the solutions presented in Shatnawi [9] and
Foucault ef al. [6]. In this study, we executed one quasi-
experiment for each possible value of the first variable (i).
For the second variable (ii), there are two options: to con-
sider the context or not. To define the context, we used
two out of three variables identified by Zhang et al. [10]:
application domain and the number of changes, since the
programming language of the base used is the same. There-
fore, for each quasi-experiment, the treatment factor is the
context usage. Furthermore, for each quasi-experiment, we
have one dependent (i.e., response) variable: the quality of
the thresholds defined.

3.4. Measurement procedure

To evaluate the hypotheses, assess the research questions
and research goals, we collected metrics. Furthermore, by
defining the metrics, we formalized the hypotheses pre-
sented in Section 3.1 statistically test them. As stated in
Section 3.3, for each quasi-experiment, we have one depen-
dent variable: the quality of the thresholds defined. They
were collected through the open source tool ckjm' and pub-

Uhttp://www.spinellis.gt/sw/ckjm/

lished by the Metrics Repository [19, 20]. The measure-
ment procedure was based on Shatnawi [9].

In this study, we assumed that the highest the source
code quality, the fewer faults the software has. Since all of
the objects of study are software written in Java code (i.e.,
Object-oriented), as presented in 3.2, in order to measure
the source code quality, we used the most popular Object-
oriented metric set: CK metrics [11], which we presented
in an overview in Section 2.1.

To measure the number of software faults, we used the
Buglnfo tool2. With this tool, we collected the number of
faults of each class for all of the versions of the projects.
This tool analyses the commits of a given project and de-
tects, using regular expressions, if given classes had faults.
Therefore, whenever a commit message is compatible with
a defined regular expression, the number of faults for the
given classes is incremented. Given this, we used the num-
ber of faults detected using the Buglnfo tool to indicate
source code quality.

To measure the threshold quality, we used the F-measure.
For this purpose, the first step was to group the objects
of study given the context variables presented in Section
3.3. Afterward, we separated the group into two samples.
The first sample, called context sample, was composed of
data from projects with the given characteristics: developed
in Java, with software development as the application do-
main and classified as extra large regarding the number of
changes. The second sample, called control sample, is com-
posed of the remaining data.

For each quasi-experiment, we used the samples to com-
pare the results found by applying the given thresholds’ def-
inition solution (i.e., Shatnawi [9] or Foucault e al. [6])
considering or not context variables. For each sample, we
applied the k-fold cross-validation with k¥ = 10. For ev-
ery iteration, we used 9k to define the thresholds for six
CK metrics: CBO, DIT, NOC, RFC, LCOM and WCM.
We used 1k interaction’ to evaluate the thresholds. As a re-
sult, we have two possible outcomes: (i) faulty classes, if
M > R; or (ii) nonfaulty classes, if M < R, where M is
the collected metric value and R is the defined threshold.
The procedure is presented in Figure 1.

Table 2: The confusion matrix based on a threshold value.

Predicted || Faulty Nonfaulty
M>=R True positive False positive
M<R False negative True negative

We used the confusion matrix presented in Table 2 to
measure the performance of using the thresholds model in
identifying actual fault classes using three measures: Re-

Zhttps://kenai.com/projects/buginfo

For each sample database

For each k in k-fold=10

For each k in k-fold=10

Derive Threshold
Value

|

[Create the confusion]

matrix

|

[Calculate F-measure]

Figure 1: Design.

call, Precision, and F-measure. These measures are calcu-
lated as follows:

TP

Recall = W (1)
TP
recision TP+ FD 2)

(8% + 1) x Precision * Recall
B2 x Precision + Recall

3)

F — measure =

e The term [is used to assign a weight to Recall. In
our work, 3 is equal to 1, and Recall and Precision are
equally weighted.

* True Positive (TP): faulty classes that are correctly
classified as such (i.e. there are faults fixed in the class
and the metric value exceeds the threshold).

* False Negative (FN): faulty classes that are misclassi-
fied as nonfaulty (i.e. there are faults fixed in the class,
but the metric value is less than the threshold).

* True Negatives (TN): nonfaulty classes that are cor-
rectly classified as such (i.e. there are no faults fixed
in the class and the metric value is less than the thresh-
old).

* False Positives (FP): nonfaulty classes that are misclas-
sified as faulty (i.e. there are no faults fixed in the class,
but the metric value exceeds the threshold).

The values of both Recall and Precision are between
[0,1]. Values that are closer to 1 mean better results, with
1 as an ideal value (i.e., without FN or FP). According to
Shatnawi [9], in practice, it is hard to achieve high Recall
and high Precision. Finally, we used the F-measure to eval-
uate the overall performance of classification, combining
Recall and Precision.

At the end, for each metric, we had a set of F-measures
for the context sample and a different set for the control
sample. We compared the pairs of F-measures of both sets
using the non-parametric Wilcoxon test [21]. Thus, for each
quasi-experiment, we formally defined a null and alternative
hypothesis:

Therefore, for each quasi-experiment, we formally de-
fined a null and alternative hypothesis:

HO: 2 < U, where 2 is the F-measure for the con-
text sample and W is the F-measure for the control sample.
HA: Q > .

4. Analysis and Results

4.1. First quasi-experiment: Foucault ef al. approach

For the first quasi-experiment, we evaluated the solution
proposed by Foucault et al. [6]. This approach, as presented
in Section 2.2, is based on quantile analysis. We decided to
use only the first percentile (80%) since it has the ability to
represent the whole. An average of the thresholds’ values
found can be seen in Table 3. By comparing the thresh-
olds defined for both samples (i.e., context and control), it
is possible to see that the DIT metric was the same for both
samples.

Table 3: An average of the thresholds’ values found using
Foucault et al.’s approach.

Metric || Context threshold Control threshold

WMC 9.00 10.05
NOC 0.00 0.20
CBO 9.05 10.10
RFC 25.15 27.85
DIT 2.50 2.50
LCOM 33.30 44.64

In Table 4, we present the average F-measure of the two
data samples. Furthermore, we present the improvement of
the threshold definition, § = Q /W, and the p-value result-
ing from the Wilcoxon test. By analyzing the results, we
conclude that, for all metrics, the threshold definition was
slightly improved by considering the context. Since for all
metrics p —value < 0.05, we refute the null hypothesis that
states that considering the context to define the thresholds
does not influence its definition for the solution presented
by Foucault et al. [6].

4.2. Second quasi-experiment: Shatnawi approach

For the second quasi-experiment, we evaluated the solu-
tion proposed by Shatnawi [9]. This approach, as presented
in Section 2.2, is based on log transformation.

Initially, for each k-fold interaction, two thresholds de-
rived from each of the six CK metrics, one for each of the
two database samples. An average of the thresholds’ values

Table 4: Results for Foucault et al.’s approach.

F-measure

Metric || Context Control 0 p-value

WMC 0.23 0.20 15.00% 1.62e-04
NOC 0.42 0.18 133.30% 5.41e-06
CBO 0.23 0.14 64.30% 5.41e-06
RFC 0.22 0.19 15.80% 2.16e-05
DIT 0.18 0.10 80.00% 5.41e-06
LCOM || 0.16 0.15 6.70% 1.43e-03

found can be seen in Table 5. By comparing the thresholds
for both samples, the differences were minimal.

Table 5: An average of the thresholds’ values found using
Shatnawi’s approach.

Metric || Context threshold Control threshold

WMC 1.79 1.82
NOC 0.75 0.74
CBO 1.81 1.85
RFC 3.79 3.90
DIT 0.92 0.93
LCOM 0.62 0.62

In Table 6, we present the average F-measure of the two
data samples. Furthermore, we present the improvement
of the threshold definition, § = /W, and the p-value re-
sulting from the Wilcoxon test. By analyzing the results,
we can notice that for all metrics, the threshold definition
was slightly improved by considering the context. This is
possible because the thresholds were defined for different
samples. Since for all metrics p — value < 0.05, we refute
the null hypothesis that states that considering the context
to define the thresholds does not influence its definition for
the solution presented by Shatnawi [9].

Table 6: Results for Shatnawi’s approach.

F-measure

Metric || Context Control ¢ p-value

WMC || 0.40 0.31 29.03% 5.41e-06
NOC 0.09 0.06 50.00% 5.41e-06
CBO 0.39 0.30 30.00% 5.41e-06
RFC 0.39 0.31 25.81% 5.41e-06
DIT 0.42 0.32 31.25% 5.41e-06
LCOM || 0.34 0.28 21.43% 9.08e-05

5. Threats to Validity

A threat to internal validity is that we did not consider
the impact of many software development factors such as
development process and team experience. In addition, the
experiment would strengthen the evidence by performing

the same tests alternating the control and context groups,
showing the threat of the control group. Finally, we only
evaluated Java-based projects.

As threat to external validity, we only used data from fif-
teen systems and two solutions to derive thresholds, which
might not be enough to generalize the data in the context of
CK metrics. Furthermore, we cannot generalize the results
for other software metrics.

As threat to construct validity, we identified a faulty class
through regular expressions in commit messages using the
Buglnfo tool, which might not be accurate. In addition,
we used the percentage of faults to validate the thresholds.
Even though there is evidence that the six CK metrics can
indicate flaws in software [13] and is the same process used
by Shatnawi [9], the reliability of the metric can be a threat
to the validity of our study.

6. Conclusions

In this paper, we presented results of an empirical study
performed to evaluate the influence of the context on the
definition of software metrics’ thresholds. The scope of our
contribution is restricted to CK metrics. We executed two
quasi-experiments, each one using one solution proposed
in the literature to define thresholds for software metrics.
We used the solutions presented in Foucault ef al. [6] and
Shatnawi [9]. The objects of study were data from fifteen
open-source Java-based projects.

We used the Wilcoxon test to evaluate both quasi-
experiments. For both cases, the threshold’s definition ac-
curacy improved by considering the context to compute
it. Therefore, we present evidence that, in the context of
CK metrics, it is relevant to consider the context to define
thresholds. As a result, we conclude that thresholds can
only be reused for projects with similar contexts.

In our future work, we plan to study the implications of
our results in decision-making and software quality man-
agement. Furthermore, we plan to execute experiments to
investigate how, for other types of software metrics, the con-
text influences the definition of thresholds.

References

[1] N. E. Fenton and M. Neil, “Software metrics: roadmap,” in Pro-
ceedings of the Conference on the Future of Software Engineering.
ACM, 2000, pp. 357-370.

[2] M. J. Ordonez and H. M. Haddad, “The state of metrics in software
industry,” in Information Technology: New Generations, 2008. ITNG
2008. Fifth International Conference on. 1EEE, 2008, pp. 453-458.

[3] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds
from benchmark data,” in 2010 IEEE International Conference on
Software Maintenance. 1EEE, sep 2010, pp. 1-10.

[4] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and
H. C. Almeida, “Identifying thresholds for object-oriented software
metrics,” Journal of Systems and Software, no. 2, pp. 244-257, feb
2012.

[5]

[6

=

[7]

[8

—

[9]

[10]

(11]

(12]

[13

—_

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

R. Martin, “Oo design quality metrics,” An analysis of dependencies,
vol. 12, pp. 151-170, 1994.

M. Foucault, M. Palyart, J.-R. Falleri, and X. Blanc, “Computing
contextual metric thresholds,” in Proceedings of the 29th Annual
ACM Symposium on Applied Computing - SAC ’14. New York,
New York, USA: ACM Press, mar 2014, pp. 1120-1125.

B. Efron, “Bootstrap methods: another look at the jackknife,” The
annals of Statistics, pp. 1-26, 1979.

R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software
metrics threshold values using ROC curves,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 22, no. 1,
pp. 1-16, jan 2010.

R. Shatnawi, “Deriving metrics thresholds using log transformation,”
Journal of Software: Evolution and Process, vol. 27, no. 2, pp. 95—
113, feb 2015.

F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan, “How
Does Context Affect the Distribution of Software Maintainability
Metrics?” in 2013 IEEE International Conference on Software Main-
tenance. 1EEE, sep 2013, pp. 350-359.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” Software Engineering, IEEE Transactions on, vol. 20,
no. 6, pp. 476-493, 1994.

Z. Bukhari, J. Yahaya, and A. Deraman, “Software metric selec-
tion methods: A review,” in Electrical Engineering and Informat-
ics (ICEEI), 2015 International Conference on. 1EEE, 2015, pp.
433-438.

M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engi-
neering. ACM, 2010, p. 9.

P. Oliveira, F. P. Lima, M. T. Valente, and A. Serebrenik, “Rttool:
A tool for extracting relative thresholds for source code metrics,” in
2014 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 1EEE, 2014, pp. 629-632.

P. Oliveira, M. T. Valente, and F. P. Lima, “Extracting relative thresh-
olds for source code metrics,” in 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Re-
verse Engineering (CSMR-WCRE). 1EEE, feb 2014, pp. 254-263.

L. Sanchez-Gonzélez, F. Garcia, F. Ruiz, and J. Mendling, “A study
of the effectiveness of two threshold definition techniques,” in Eval-
uation & Assessment in Software Engineering (EASE 2012), 16th
International Conference on. 1ET, 2012, pp. 197-205.

R. Bender, “Quantitative risk assessment in epidemiological studies
investigating threshold effects,” Biometrical Journal, vol. 41, no. 3,
pp. 305-319, 1999.

S. K. Thompson, “Simple random sampling,” Sampling, Third Edi-
tion, pp. 9-37, 2012.

M. Jureczko, “Significance of different software metrics in defect
prediction,” Software Engineering: An International Journal, vol. 1,
no. 1, pp. 86-95, 2011.

L. Madeyski and M. Jureczko, “Which process metrics can signifi-
cantly improve defect prediction models? an empirical study,” Soft-
ware Quality Journal, vol. 23, no. 3, pp. 393-422, 2015.

D. F. Bauer, “Constructing confidence sets using rank statistics,”
Journal of the American Statistical Association, vol. 67, no. 339, pp.
687-690, 1972.

