Reducing the Cost of Android Mutation Testing

Lin Deng
Department of Computer and Information Sciences
Towson University, Towson, Maryland
ldeng @towson.edu

Abstract—Due to the high market share of Android mobile
devices, Android apps dominate the global market in terms
of users, developers, and app releases. However, the quality of
Android apps is a significant problem. Previously, we developed
a mutation analysis-based approach to testing Android apps and
showed it to be very effective. However, the computational cost
of Android mutation testing is very high, possibly limiting its
practical use. This paper presents a cost-reduction approach
based on identifying redundancy among mutation operators
used in Android mutation analysis. Excluding them can reduce
cost without affecting the test quality. We consider a mutation
operator to be redundant if tests designed to Kkill other types
of mutants can also Kkill all or most of the mutants of this
operator. We conducted an empirical study with selected open
source Android apps. The results of our study show that three
operators are redundant and can be excluded from Android
mutation analysis. We also suggest updating one operator’s
implementation to stop generating trivial mutants. Additionally,
we identity subsumption relationships among operators so that
the operators subsumed by others can be skipped in Android
mutation analysis.

I. INTRODUCTION

Mobile applications (mobile apps) are software programs
specifically developed for mobile devices. Due to the con-
venience of mobile devices, people use mobile apps more
often than applications on other platforms [1]. Approximately
85% of mobile devices use the Android operating system
[2]. In March 2018, more than 3.6 million Android apps are
available for download on the Google Play Store [3]. However,
many Android apps contain software faults, and users often
experience problems. An Android analysis organization [3]]
found that 14% of Android apps are “low-quality.”

Our prior work applied mutation testing to testing Android
apps [4], explored the feasibility of Android mutation testing
[5]], and empirically evaluated its fault detection effectiveness
using naturally occurring faults and crowdsourced faults [6].
The results show that Android mutation testing is very effec-
tive at detecting both types of software faults.

However, Android mutation testing can be expensive in
several ways. Due to the constraints on size, weight, and
power consumption, most Android devices are equipped with
hardware that is slower than desktops and laptops. Executing
and testing Android apps take more execution time than tradi-
tional software programs. Moreover, while Android mutation
testing has been found to be effective at designing high-quality
test cases and assessing test cases generated by other testing
techniques, the number of mutants that need to be executed
increases the cost of Android mutation testing. For example,

DOI reference number: 10.18293/SEKE2018-184

Jeft Offutt
Department of Computer Science
George Mason University, Fairfax, Virginia
offutt@gmu.edu

executing 20 tests, one minute for each test, on 1,000 Android
mutants may require up to 13.8 days.

This paper presents our experimental evaluation that tries
to speed up mutation testing by finding redundant mutation
operators that can be excluded from Android mutation testing,
while still maintaining fault-detection effectiveness. Specifi-
cally, this experimental study analyzed redundancy among the
19 Java traditional mutation operators [7|] and the 17 Android
mutation operators [S].

The results of our study show that three mutation operators
are redundant and can be excluded without reducing the ef-
fectiveness of Android mutation testing: (1) Unary Arithmetic
Operator Deletion (AODU), (2) Unary Arithmetic Operator
Insertion (AOIU), and (3) Logical Operator Insertion (LOI).
Also, the design of the Activity Lifecycle Method Deletion
(MDL) operator requires further improvement. Furthermore,
the Button Widget Switch (BWS) operator subsumes But-
ton Widget Deletion (BWD), and Operator Deletion (ODL)
subsumes Constant Deletion (CDL), Conditional Operator
Deletion (COD), and Variable Deletion (VDL). In addition,
mutants created by the Fail on Back (FOB) operator, the
TextView Deletion (TVD) operator, and the Orientation Lock
(ORL) operator are very hard to kill.

This paper is organized as follows. Section [II| introduces
background on Android mutation testing. Section [III| describes
the experiment used to identify the redundancy among Android
mutation operators, then, presents and analyzes the experiment
results. Section gives an overview of related research.
Section[V]discusses threats to validity, and the paper concludes
and suggests future work in Section [VI|

II. BACKGROUND

In 1978, DeMillo et al. invented mutation testing [8f, a
syntax-based software testing technique that is very effective
at designing high-quality tests and evaluating pre-existing
tests. Mutation testing modifies a software artifact such as
source code, to create new versions, called mutants. Mutation
operators define the rules that specify the changes that are
made to a software artifact. Testers design test cases to cause
mutants to behave differently from the original, then the
mutants are called killed. Well designed mutation operators
can lead to very powerful test cases. The more mutants a test
set can kill, the more effective the test set is at finding faults.

Mutation operators have been created for many different
languages, including C and Java [7], [9]. Our prior work [4]-
[6] used the novel programming features, unique characteris-
tics, and testing challenges of Android apps to design and

TABLE I: Android Mutation Operators

[Category [Android Mutation Operator
Intent Payload Replacement (IPR)

Intent Target Replacement (ITR)

OnClick Event Replacement (ECR)
OnTouch Event Replacement (ETR)
Activity Lifecycle Method Deletion (MDL)
Service Lifecycle Method Deletion (SMDL)
Button Widget Deletion (BWD)

EditText Widget Deletion (TWD)

Activity Permission Deletion (APD)
Button Widget Switch (BWS)

TextView Deletion (TVD)

Fail on Null (FON)

Orientation Lock (ORL)

Fail on Back (FOB)

Location Modification (LCM)

WakeLock Release Deletion (WRD)

‘Wi-Fi Connection Disabling (WCD)

Event-based

Component
Lifecycle

XML-related

Common Faults

Context-aware
Energy-related
Network-related

evaluate 17 Android mutation operators, as listed in Table
M We also used 15 Java traditional method-level mutation
operators [7]] and four deletion mutation operators [10], [11].

III. EMPIRICAL EVALUATION

Normally, all mutation operators are applied to generate
mutants. This creates lots of mutants that must be executed
many times at significant cost. Recent research [[12]] has found
that between 90% and 99% of mutants are redundant in the
sense that any test that kills another mutant is guaranteed
to kill the redundant mutant. If redundant mutation operators
can be identified and excluded, the cost of mutation will be
significantly reduced. All mutants generated from the same
mutation operator are of the same fype. Thus, we use this
study to determine whether mutants of one type are killed by
the tests designed to kill mutants of other types.

In particular, this empirical evaluation tries to evaluate the
redundancy in Android mutation testing by addressing the
following research questions:

RQ1: How many mutants of one particular type can be
killed by tests created to kill another type of mutants?

RQ2: Which types of mutants are less likely to be killed
by tests created to kill other types of mutants?

RQ3: Can any mutation operator be excluded or improved
without significantly reducing effectiveness?

A. Experimental Subjects

This experimental evaluation used 12 Android classes and
their XML layout and configuration files from four open
source Android apps: JustSit 13|, MunchLife |14)|, TippyTip-
per [15], and Tipster [16]. Table provides an overview
of the projects. The 19 Java traditional mutation operators
[7] generated 1,947 mulJava mutants and the 17 Android
operators generated 1,018 mutants. The number of mulJava
mutants ranged from four for About.java in TippyTipper to
534 for MunchLifeActivity.java in MunchLife, and the number
of Android mutants ranged from one for AndroidManifest.xml
in MunchLife to 258 for JustSit.java in JustSit.

B. Redundancy Scores

The mutation-adequate test set 7; includes tests that are
specifically designed to kill all the mutation of type i. To quan-
tify the redundancy among Java traditional mutation operators

TABLE II: Details of Experimental Subjects

Apps Components LOC XML muJava | Android
Nodes | Mutants | Mutants
JustSit JustSit.java 444 394 258
main.xml 13
About.java 48 9 13
about.xml 6
RunTimer.java 99 131 25
run_timer.xml 3
JsSettings.java 61 28 31
settings.xml 6
AndroidManifest.xml 14 0 4
Munch- | MunchLifeActivity.java 384 534 158
Life main.xml 12
Settings.java 68 47 8
preferences.xml 5
AndroidManifest.xml 10 0 I
Tippy- TippyTipper.java 239 105 198
Tipper main.xml 20
SplitBill.java 134 124 49
SplitBill.xml 31
Total.java 279 231 115
Total.xml 44
About.java 30 4 14
About.xml 10
Settings.java 61 13 15
Tipster TipsterActivity.java 297 327 129
main.xml 30
[Total] [2144] 204] 1947] 1018 |

and Android mutation operators, Praphamontripong and Offutt
[17] defined the redundancy score r; ; to be:

Redundancy Score: r; j = Mij o 100% (1)
M;
where, m; ; is the number of mutants of type j killed by the
mutation-adequate test set T;, and M; is the total number of
non-equivalent mutants of type j.

In other words, the redundancy score 7; ; is the percentage
of mutants of type j killed by a test set that is adequate
for type i. For example, a program has 100 non-equivalent
Relational Operator Replacement (ROR) mutants and 200
non-equivalent Arithmetic Operator Insertion (AOIS) mutants.
A tester designs a test set that kills all the non-equivalent
AOIS mutants, getting an AOIS mutation-adequate test set.
If this AOIS mutation-adequate test set also kills 60 ROR
mutants, the redundancy score r40r15,ror in this program is
60 + 100 = 60%.

Note that for a given subject app, according to the defi-
nition above, every possible pair of mutation operators has
a redundancy score. Then, across all the subject apps in an
experimental evaluation, there are multiple redundancy scores
for the same pair of mutation operators with different values.
For example, "41015,Ror may be 60% in subject s, 50% in
s2, and 40% in s3. Consequently, a score that can represent
the overall redundancy relationship is required. Praphamon-
tripong and Offutt [|I7] defined the average redundancy score
(Taverage,i,j) to be the average value of all the r; ; of the
operator in all experimental subjects. The average redundancy
score is not weighted, i.e., we compute the redundancy score
for each subject app, then calculate the average of the scores.

Redundancy score indicates quantitatively whether a muta-
tion operator is redundant or not. For example, if a mutation
operator has a redundancy score of 0%, it means no tests that
were designed to kill other types of mutants killed any mutants
of this type. That is, the mutation operator is not redundant.

However, if a mutation operator has a redundancy score of
100% for the tests that are specifically designed to kill mutants
of another type, it means this operator is totally redundant and
does not contribute anything to the quality of tests. Excluding
it from the mutation analysis can reduce cost without reducing
effectiveness. If a mutation operator has a redundancy score
of 50%, half of the mutants generated by this operator are
killed by the tests designed for other types of mutants. Some
programs do not use all language features, thus the relevant
mutation operators cannot be used to generate tests. Then, no
tests will be designed for this mutation type.

C. Experimental Procedure

This study includes four steps to obtain the redundancy
scores among the mutation operators:

1) Generate mutants: Given a subject, apply the 19 Java
traditional mutation operators and the 17 Android mu-
tation operators to to generate mutants. m,, represents
the mutants created by operator .

2) Eliminate equivalent mutants and design tests: For
each set of mutants m,,, eliminate all equivalent mutants.
Then, design a set of test cases to kill all the non-
equivalent mutants, denoted by ¢,,, that is, tests designed
to kill the mutants of type n. We design tests indepen-
dently for each type of mutants. No redundant tests are
introduced once all the mutants are killed.

3) Execute tests: For each set of test cases t,,, execute all
tests on all mutants.

4) Compute the redundancy scores: For each pair of
mutation operators and for each subject app, compute the
redundancy score 7; ;. Then, to get an overview across
all the subjects in the experiment, compute an average
redundancy score for each mutant type.

Our tool implements a multithreading controller to paral-
lelize the execution with multiple emulators and real devices.
The tool executes on a MacBook Pro with a 2.6 GHz Intel i7
processor and 16 GB memory to control 8 emulators and 12
Motorola MOTO G Android smartphones in the experiment.
All devices run on the Android KitKat operating system.

D. Experimental Results

This section presents experimental results and key findings.

RQ1: How many mutants of one particular type can be
killed by tests created to kill another type of mutants?

Table [ITT] shows the average redundancy scores across all the
subject apps. The columns represent mutation operators, and
rows represent tests designed to kill all mutants of that type.
So, for example, the tests designed to kill all AODU mutants
(test_AODU) killed 18.2% of the AOIS mutants. Some pairs
mutant types never showed up in the same program, so their
tests could not kill mutants of the other type. For example,
LOR and CDL mutants never appeared together, so test_LOR
is marked “n/a” for CDL, and vice versa.

Four Java traditional mutation operators, ASRS, LOD, SOR,
and AODS, did not generate any mutants, and four Android
mutation operators, ETR, LCM, SMDL, and WCD, did not
generate any mutants. Thus, they are not listed in Table
WRD mutants are also excluded because testers need to use the

dumpsys tool to check system information, thus they cannot
be redundant with other types of mutants. APD mutants are
excluded because the principle of APD is to try all possible
tests to identify those un-killed APD mutants, instead of
designing tests to kill mutants.

RQ2: Which types of mutants are less likely to be killed
by tests created to Kkill other types of mutants?

According to the results in Table [[1I} three Android mutation
operators were found to be very hard to kill. On average,
only 6.4% of Fail on Back (FOB) mutants were killed by
the mutation adequate test sets of other mutation operators,
with the highest redundancy score of 33.3%. FOB injects a
“Fail on Back” event handler into every Activity class. Since
Android apps are event-based programs, their execution flows
rely heavily on events initiated by user actions. The Back
button lets users move backward to the previous Activity,
interrupting the usual execution flow. It is usually not on the
“happy path” from the perspective of software design, and
results in a common fault of Android apps, that is, the software
fails when the Back button is clicked. To kill FOB mutants,
testers need to design tests that press the Back button at least
once at every Activity. However, in this experiment, very few
tests designed for other mutation operators included the user
action of clicking the Back button.

Very few TextView Deletion (TVD) mutants were killed.
On average, less than 1% of TVD mutants were killed by the
mutation adequate test sets of other mutation operators, and its
highest redundancy score was 8.3%. Since TextView widgets
cannot be edited by users, they usually do not associate
with any user events, nor require event handlers from the
implementation of the app. However, TextView widgets are
widely used by developers to present essential information.
TVD deletes TextView widgets from screens one at a time.
Killing a TVD mutant needs a test to ensure that the TextView
widget displays correct information. Very few tests checked
TextView widgets’ contents, unless the TextView widget was
used to display some variable results, such as a tip amount.

Very few Orientation Lock (ORL) mutants were killed. On
average, only 2.5% of Orientation Lock (ORL) mutants were
killed by the mutation adequate test sets of other mutation
operators, and its highest redundancy score was 12.5%. Most
mobile devices have the unique feature of being able to change
the screen orientation. To use to this feature, many apps change
their layout of the GUI when the orientation changes. How-
ever, different screen sizes and resolutions on different devices
make switching the orientation difficult for the developers,
leading to faults. ORL mutants freeze the orientation of an
Activity by inserting a special locking statement into the source
code, so that no switching actions can be accepted by the app.
To kill ORL mutants, testers need to design tests that explicitly
change the orientation, then check whether the GUI structure
is displayed as expected after switching the orientation. In this
experiment, no other mutation operators consider switching the
screen orientation, so there was no redundancy.

RQ3: Are any Android mutation operators redundant
enough to be excluded, or can any be improved? In
particular, can the mutants of one type always be Killed
by tests created to kill another type?

TABLE III:

Average Redundancy Scores

muJava Mutation Operator Android Mutation Operator
AODU | AOIS | AOIU | AORB | CDL | COD | COI | COR | LOI | LOR | ODL | ROR | SDL | VDL || BWD | BWS | ECR | FOB | FON | IPR | ITR | MDL | ORL | TVD | TWD

©s_AODU | —— | 0.182 | 0.351 | 0.250 | 0.000 | 0.000 | 0.108 | 0.000 | 0.286 | 0.000 | 0.053 | 0.169 | 0.165 | 0.000 || 0.125 | 0.333 | 0.200 | 0.000 | 0.917 | 0.000 | 0.167 | 0.750 | 0.000 | 0.000 | 0.500

tes_AOIS 1000 | — | 0819 | 0.875 | 0.750 | 1.000 | 0537 | 0524 | 0.631 | 0.000 | 0491 | 0.504 | 0.545 | 0.937 || 0.688 | 0.I11 | 0.869 | 0.167 | 0.567 | 0.800 | 0.778 | 0.875 | 0.021 | 0.000 | 0.667

tes_AOIU 1000 | 0545 | —— | 0.865 | 0.600 | 0.750 | 0466 | 0476 | 0.681 | 0.000 | 0.402 | 0.443 | 0.560 | 0.916 || 0.813 | 0.167 | 0.869 | 0.125 | 0.472 | 0.800 | 0.944 | 0.781 | 0.016 | 0.000 | 0.667

eS_AORB | 1.000 | 0.563 | 0.688 | —— | 0.750 | 0.750 | 0.500 | 0.643 | 0561 | 0.000 | 0.527 | 0.429 | 0.396 | 0.947 || 0.688 | 0.I11 | 0.869 | 0.000 | 0.458 | 0.800 | 0.778 | 0.850 | 0.025 | 0.000 | 0.667

test_CDL 1000 | 0601 | 0.768 | 0.633 | —— | 0.750 | 0.456 | 0.643 | 0.645 | n/a | 0567 | 0497 | 0546 | 0.702 || 0583 | 0.111 | 0.803 | 0.000 | 0.333 | m/a | 1.000 | 0.900 | 0.025 | 0.050 | 0.500

test_COD 1.000 | 0211 | 0.632 | 0.333 | 1.000 | —— | 0500 | 0286 | 0500 | n/a | 0.474 | 0.326 | 0.342 | 0.333 || 0250 | 0.333 | m/a | 0.000 | 1.000 | wa | wa | 1.000 | 0.000 | 0.000 | 0.000

test_COI 1.000 | 0424 | 0471 | 0.613 | 0.500 | 1.000 | —— | 0905 | 0574 | 0.500 | 0.439 | 0.854 | 0.621 | 0.579 || 0.833 | 0.417 | 0.775 | 0.200 | 0.708 | 0.800 | 0.958 | 0.850 | 0.025 | 0.000 | 0.500

test_COR 0.000 | 0412 | 0385 | 0.075 | 0.125 | 0.750 | 0.874 | — | 0.505 | wa | 0277 | 0725 | 0563 | 0.026 || 0375 | 0333 | 0333 | 0333 | 0.667 | m/a | 1.000 | 0.833 | 0.042 | 0.000 | 0.000

test_LOT 1000 | 0777 | 0.868 | 0.765 | 0.600 | 1.000 | 0.461 | 0.571 | —— | 0.000 | 0425 | 0.645 | 0590 | 0.916 || 0813 | 0278 | 0.869 | 0.125 | 0.472 | 0.800 | 0.778 | 0.781 | 0.016 | 0.000 | 0.667

test_LOR 1000 | 0286 | 0.176 | 0500 | nfa | nfa | 0.105 | na | 0138 | — | 0000 | 0.152 | 0.132 | 0.000 || 1000 | n/a | 0.600 | 0.000 | 0.833 | 0.800 | 0.333 | 0.500 | 0.000 | 0.000 | 1.000

test_ODL 1.000 | 0.777 | 0.847 | 0.885 | 1.000 | 1.000 | 0.689 | 1.000 | 0.796 | 0.500 | —— | 0.712 | 0.673 | 1.000 || 0.792 | 0.278 | 0.869 | 0.143 | 0.567 | 0.800 | 0972 | 0.893 | 0.018 | 0.042 | 0.667

test_ROR 1000 | 0654 | 0543 | 0.838 | 1.000 | 1.000 | 0.900 | 1.000 | 0.621 | 0.500 | 0.664 | —— | 0.694 | 0.658 || 1.000 | 0417 | 1.000 | 0.200 | 0.708 | 0.800 | 0.958 | 0.850 | 0.125 | 0.000 | 0.500

test_SDL 1000 | 0730 | 0921 | 0920 | 1.000 | 1.000 | 0.926 | 1.000 | 0.853 | 0.500 | 0916 | 0945 | —— | 0.937 || 1.000 | 0278 | 1.000 | 0.250 | 0.639 | 0.800 | 0.972 | 0.906 | 0.078 | 0.083 | 1.000

test_VDL 1000 | 0706 | 0743 | 0708 | 1.000 | 0.750 | 0.368 | 0.643 | 0.653 | 0.500 | 0527 | 0429 | 0424 | —— || 0688 | 0.111 | 0.869 | 0.000 | 0.458 | 0.400 | 0.972 | 0.850 | 0.025 | 0.000 | 0.667

tes_BWD 1000 | 0401 | 0566 | 0431 | 0333 | 0.750 | 0.561 | 0.786 | 0.583 | 0.000 | 0316 | 0459 | 0331 | 0355 || —— | 0278 | 1.000 | 0.000 | 0.458 | 0.800 | 0.833 | 0.688 | 0.031 | 0.000 | 0.000

tes_BWS 0.000 | 0.009 | 0445 | 0.033 | 0.000 | 0.000 | 0.200 | 0.000 | 0418 | n/a | 0.013 | 0.048 | 0.185 | 0.018 || 1.000 | —— | 0.000 | 0.000 | 0.333 | wa | 0.000 | 0.917 | 0.000 | 0.000 | 0.000

test_ECR 1.000 0.500 0.532 0.575 | 0.750 n/a | 0453 1.000 | 0.521 0.000 | 0.400 | 0.397 | 0470 | 0474 1.000 | 0.000 — | 0.000 | 0.278 1.000 | 0.972 0.583 | 0.042 | 0.000 0.500

test_FOB 0500 | 0.004 | 0503 | 0.020 | 0.000 | 0.000 | 0.080 | 0.000 | 0.449 | 0.000 | 0.006 | 0.049 | 0.312 | 0.011 || 0.000 | 0.000 | 0.000 | —— | 0.472 | 0.000 | 0.000 | 0.281 | 0.000 | 0.000 | 0.000

test_FON 0500 | 0.138 | 0578 | 0363 | 0.125 | 0.000 | 0.276 | 0.333 | 0.537 | 0.000 | 0.125 | 0246 | 0.338 | 0.079 || 0500 | 0.000 | 0.652 | 0.000 | —— | 0.400 | 0.639 | 0.607 | 0.018 | 0.000 | 0.000

tesL_IPR 1000 | 0286 | 0.353 | 0.500 | wa | nwa | 0105 | n/a | 0.138 | 0.000 | 0.389 | 0.152 | 0.388 | 0.000 || 1.000 | n/a | 1.000 | 0.000 | 0.833 | —— | 0500 | 0.500 | 0.000 | 0.000 | 0.000 Excluding:

tesL_ITR 1000 | 0262 | 0471 | 0.367 | 0.250 | n/a | 0.186 | 0.000 | 0415 | 0.000 | 0.240 | 0.135 | 0.251 | 0.035 || 0.389 | 0.000 | 0.563 | 0.000 | 0.278 | 0.800 | —— | 0.750 | 0.000 | 0.000 | 0.500 AODS | APD

test_MDL 0500 | 0.062 | 0520 | 0.040 | 0.250 | 0.000 | 0.171 | 0.333 | 0.472 | 0.000 | 0.023 | 0.109 | 0.334 | 0.021 || 0.125 | 0.000 | 0.111 | 0.000 | 0.472 | 0.000 | 0.333 | —— | 0.016 | 0.000 | 0.000 ASRS | ETR

test_ORL 0.000 | 0.007 | 0503 | 0.020 | 0.000 | 0.000 | 0.080 | 0.000 | 0.449 | 0.000 | 0.006 | 0.019 | 0291 | 0.011 || 0.000 | 0.000 | 0.000 | 0.000 | 0.472 | 0.000 | 0.000 | 0219 | —— | 0.000 | 0.000 LOD | LCM

tes_TVD 0500 | 0.010 | 0449 | 0.025 | 0.200 | 0.000 | 0.100 | 0.000 | 0.426 | 0.000 | 0223 | 0.062 | 0.363 | 0.211 || 0.000 | 0.000 | 0.000 | 0.000 | 0.458 | 0.000 | 0.000 | 0.833 | 0.083 | —— | 0.000 SOR | SMDL

tes_TWD 0500 | 0.095 | 0518 | 0.167 | 0.000 | 0.250 | 0.192 | 0.143 | 0.476 | 0.000 | 0.147 | 0.157 | 0.183 | 0.000 || 0.167 | 0333 | 0.603 | 0.000 | 0.611 | 0.000 | 0.500 | 0.833 | 0.000 | 0.000 | — WCD

Average 0771 | 0360 | 0.569 | 0.450 | 0.465 | 0.538 | 0.387 | 0.468 | 0.514 | 0.125 | 0.319 | 0.361 | 0.404 | 0.382 || 0576 | 0.177 | 0.602 | 0.064 | 0.561 | 0.530 | 0.626 | 0.743 | 0.025 | 0.007 | 0.375 WRD

According to the results, several mutation operators gener-
ated mutants that were easily killed by the tests designed to
kill other types of mutants. Among the 17 Android mutation
operators, the Activity Lifecycle Method Deletion (MDL)
mutation operator has the highest mean redundancy score
(74.3%). Android operating systems require all components in
Android apps to behave according to a pre-defined lifecycle.
If developers want to define a specific behavior when an
Activity switches its state, they must follow the lifecycle
and override correct methods in it. For example, after an
Activity is launched, three methods, onCreate(), onStart(),
and onResume(), need to be executed sequentially before the
user can see the Activity on the screen. MDL deletes each
overriding method to force Android to call the version in
the super class. This requires the tester to design tests that
ensure the app is in the correct expected state. However,
many developers use onCreate() to define and initialize GUI
structures of their apps. After MDL deletes the content of
onCreate(), no GUI widgets can be displayed for the current
Activity. Then any test case that looks for a GUI widget or
initiates a user event can kill MDL mutants.

A recommendation is that instead of simply deleting the
content of onCreate(), an alternative implementation is to
move the content of onCreate() to onStart() and onResume().
Figure (1| gives an example of the recommended implemen-
tation. All the code that defines GUI widgets and initializes
event handlers has been migrated from onCreate() to onStart().
In this way, MDL mutants are no longer trivial. In addition,
the only way to kill this new version of MDL mutants is
to make the Activity switch among different states, so that
different lifecycle methods can be called. Therefore, modified
MDL would require testers to design tests to make the Activity
switch among different states.

The Unary Arithmetic Operator Deletion (AODU) mutation
operator has the highest mean redundancy score (77.1%) of
the 19 muJava mutation operators [7]]. 16 sets of mutation
adequate test sets designed to kill other types of mutants killed

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.main);
Button up_button = (Button) findViewByld (R.id.up_button);

public void onStart () {
super.onStart ();

Original
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

public void onStart () {
super.onStart ();
setContentView (R.layout.main);
Button up_button = (Button) findViewByld (R.id.up_button);

Mutant

Fig. 1: Recommended Implementation of MDL

all AODU mutants, indicated by “1.000” values in the AODU
column in Table [[ll AODU deletes basic unary arithmetic
operators in an expression. Figure [2[shows an example AODU
mutant, in which the minus symbol is deleted. The results
indicate that AODU is redundant and can be excluded.

intx=-y; [AODU Mutant:
Fig. 2: An Example AODU Mutant

l Original: intx=y;

As shown in Table the Button Widget Deletion (BWD)
column has six “1.000” values, which is the second highest
among all the mutation operators. In fact, all the BWD mutants
were killed by the BWS tests. Button widgets are used by
nearly all Android apps in many ways. BWD deletes buttons
one at a time from the XML layout file of the UL. BWS
switches the locations of two buttons on the same screen. In
this way, the function of a button is unaffected, but the GUI
layout looks different from the original version. BWS requires
the tester to design tests that deliberately check the location
(either relative or absolute) of a button widget.

When BWS mutants ensure every button is displayed at the
expected location, it also guarantees that this button is shown

on the screen. Subsumption is used to theoretically compare
test criteria: a criterion C1 subsumes another criterion C2, if
every test that satisfies Cl1 is guaranteed to satisfy C2 [1§]. In
mutation testing, an operator MO1 subsumes another operator
MO?2 if a test set that kills all mutants of MOI1 is guaranteed
to kill all mutants of MO2. Thus, BWS subsumes BWD, that
is, every test set designed to kill all the BWS mutants can kill
all the BWD mutants. As a result, when users include BWS in
the Android mutation analysis, excluding BWD mutants will
not affect test effectiveness. Note that if an Activity only has
one button widget, BWS cannot generate any mutants. This
is because to achieve swirching, the Activity must display at
least two buttons. Thus, it is recommended to disable BWD
when there are BSW mutants, and enable it otherwise.

The Conditional Operator Deletion (COD) mutation oper-
ator also has six “1.000” values (second highest), and the
Constant Deletion (CDL) mutation operator has five “1.000”
values (third highest). Also, the ODL test sets killed all the
mutants of CDL, COD, and the Variable Deletion mutation
operator (VDL). The Operator Deletion mutation operator
(ODL) was originally designed by Delamaro et al. [11]]. It
deletes each arithmetic, relational, logical, bitwise, and shift
operator from all expressions. CDL deletes each constant in an
expression, and VDL deletes each variable in an expression.
Figures E] shows example ODL, CDL, and VDL mutants. Ac-
cording to the definitions, it is guaranteed that ODL subsumes
CDL and VDL. COD deletes unary conditional operators.
Figure |3| also shows that ODL and COD generate the same
mutants. Therefore, ODL theoretically subsumes COD. Not
surprisingly, test cases designed to kill ODL mutants also
kill CDL, COD, and VDL mutants, which means when using
ODL, we can exclude CDL, COD, and VDL.

Original: intx=y+2; | ODL Mutant_l: intx=y;
ODL Mutant_2: intx =2
CDL Mutant: intx=y;
VDL Mutant: intx =2
Original: intx=-y; [ODL Mutant: intx=y; ‘
Original: if (! isError) { | ODL Mutant: if (isError) {
x=y;} x=y;}
COD Mutant: if (isError) {
x=y;}

Fig. 3: Example ODL, CDL, VDL, and COD Mutants

The Unary Arithmetic Operator Insertion (AOIU) inserts a
minus sign in front of integer variables. The Logical Operator
Insertion (LOI) inserts a bitwise complement operator in front
of integer variables. 50.3% of AOIU mutants and 44.9% of
LOI mutants were killed by test_ FOB tests, which are simple
tests that only launch an Activity and click the Back button.

int Tevel = 1;
current_level.setText (Integer.toString (level)); // Original
int Tevel = T,

current_level.setText (Integer.toString (-level)); // AOIU Mutant
int level = 1;
current_level.setText (Integer.toString (~level)); / LOI Mutant

Fig. 4: AOIU and LOI Examples

Figure [4] gives example AOIU and LOI mutants. In Android
apps, each GUI widget is assigned a resource ID that is
recorded as an integer number. These resource IDs are stored
and managed in XML files. Both AOIU and LOI generate
many mutants by mutating the resource IDs in Android apps.
Figure [5| shows an example where AOIU changes the resource
ID of upbutton. However, once a resource ID is changed and
not mapped to its original GUI widget, the Android app will
immediately crash after launched, making the mutant trivial
and redundant. That is, any test case that launches the app can
kill this mutant. Similarly, LOI also generates trivial mutants.
Therefore, when using mutation testing for Android apps, we
recommend to exclude AOIU and LOI.

[Button upbutton = (Button) findViewById (R.id.upbutton); /7 Original |
| Button upbutton = (Button) findViewById (- R.id.upbutton); / AOIU |

Fig. 5: AOIU Changes Android Resource ID

In summary, we recommend the following:

1) Exclude AODU, because of its highest average redun-
dancy scores

2) Improve the design of MDL, because MDL generates
trivial mutants

3) Exclude BWD when using BWS, because BWS sub-
sumes BWD

4) Exclude AOIU and LOI, because around 50% of AOIU
and LOI mutants are trivial

5) Exclude CDL, COD, and VDL when using ODL, be-
cause ODL subsumes them

E. Re-evaluating the Effectiveness

Based on the evaluation results, we provide recommenda-
tions to eliminate the redundancy among Android mutation
operators. However, it is not clear whether the effectiveness
of Android mutation testing still holds after removing and
modifying redundant mutation operators. Due to the high
computational cost of Android mutation testing, re-conducting
the whole effectiveness evaluation in Section [[II] would take
several months. Thus, we elected to check the results on one
subject app.

According to the recommendations, we updated the im-
plementation of our Android mutation testing tool. We took
Tipster as the subject app for the re-evaluation. Originally,
Tipster generated 327 muJava mutants and 130 Android
mutants. After removing and modifying redundant mutation
operators, Tipster generated 259 muJava mutants and 125
Android mutants, with an overall 16% reduction in terms of
the total number of the mutants. After that, a new set of
mutation adequate tests was designed. Originally, Tipster had
64 crowdsourced faults, in which 51 were detected by the old
mutation adequate test set. After re-conducting the evaluation,
the newly designed mutation adequate test set using fewer
and less redundant mutants found the same 51 crowdsourced
faults in Tipster. Therefore, it is concluded that removing and
modifying redundant mutation operators in this research did
not impact the effectiveness of Android mutation testing.

IV. RELATED WORK

Traditional mutation testing uses three types of approaches
to reduce cost: do-fewer, do-smarter, and do-faster [19]. As
a do-fewer approach, selective mutation was introduced by
Wong and Mathur to choose a subset of mutation operators
[20]. The muJava tool selects 15 operators to preserve almost
the same test coverage as non-selective mutation [7|]. Empirical
studies in both Java and C show that the Deletion mutation
operators are able to result in very effective tests with much
lower cost [|10], [[L1]. This study, as a do-fewer approach, also
discussed them in Android mutation testing.

V. THREATS TO VALIDITY

Similar to most experiments in software engineering, this
empirical evaluation has several threats to validity.

Internal validity: In this experiment, we designed only one
set of Android mutation-adequate tests for each type of mutant.
The results of redundancy scores may differ for different
Android mutation-adequate tests. Also, in this experimental
study, we identified all the equivalent mutants by hand. Manual
work could introduce human errors.

External validity: We cannot guarantee that the selected
subjects are representative. The results and redundancy scores
may differ from the results in this study if we used different
subject apps. To improve the ability to compare results, we
chose Android apps that have previously been used in other
Android testing studies.

Construct validity: The implementation of our Android
mutation testing tool and the associated mutation operators
may include software faults. In this study, we constantly tested
the experimental environment to ensure reliability.

VI. CONCLUSIONS AND FUTURE WORK

Android mutation testing is an effective approach to design
and evaluate tests for Android apps. However, due to the
unique conditions of Android devices and apps, the cost of
Android mutation testing can be very expensive, in terms of
computational time and effort. We conducted an empirical
study to identify redundancy among mutation operators, with
the goal of finding mutation operators that are redundant and
do not contribute to the quality of tests.

The results of our study show that three Java traditional
mutation operators (AODU, AOIU, and LOI) are redundant
in Android mutation analysis. Excluding them can save costs
without reducing test quality. As BWS subsumes BWD, we
recommend skipping BWD mutants when BWS is used. As
ODL subsumes CDL, COD, and VDL, these three can be
excluded if ODL is used. Our study indicates that three
Android mutation operators (FOB, TVD, and ORL) have very
low average redundancy scores (6.4%, 0.7%, and 2.5%). They
are very hard to kill by other types of tests. Also, we provide
a recommendation for improving the design of MDL to stop
generating trivial mutants.

Kurtz et al. [21] found that traditional mutation scores are
inflated during mutation analysis, so are flawed as a test quality
measurement device. Since a very strong and rich test set is
needed to perform minimal mutation analysis and compute
dominator mutation scores, we did not include them into this

study, due to the expensive cost. For future work, we hope to
use minimal mutation analysis and dominator mutation scores
to verify the conclusions in this study.

ACKNOWLEDGMENT

This work was partly funded by The Knowledge Foundation
(KKS) through the project 20130085: Testing of Critical
System Characteristics (TOCSYC).

REFERENCES

[1] Kleiner Perkins Caufield & Byers, “Internet trends 2015, Online, May
2015, jhttp://www.kpcb.com/internet- trends, last access September 2015.

[2] International Data Corporation, ‘“Smartphone OS market share, 2017
Q1 Online, May 2017, https://www.idc.com/promo/smartphone-
market-share/os, last access March 2018.

[3] “Android apps on Google Play,” 2018, http://www.appbrain.com/stats/
number-of-android-apps, last access March 2018.

[4] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards mutation
analysis of Android apps,” in Tenth Workshop on Mutation Analysis
(Mutation 2015), April 2015, pp. 1-10.

[5]1 L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation operators for
testing android apps,” Information and Software Technology, vol. 81, pp.
154 - 168, 2017.

[6] L. Deng, J. Offutt, and D. Samudio, “Is mutation analysis effective
at testing android apps?” in 2017 IEEE International Conference on
Software Quality, Reliability and Security (QRS), July 2017, pp. 86-93.

[7] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MulJava : An automated class
mutation system,” Software Testing, Verification, and Reliability, Wiley,
vol. 15, no. 2, pp. 97-133, June 2005.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” I[EEE Computer, vol. 11,
no. 4, pp. 3441, April 1978.

[9] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser, R. J.

Martin, A. Mathur, and G. Spafford, “Design of mutant operators for

the C programming language,” Software Engineering Research Center,

Purdue University, West Lafayette, IN, Technical Report SERC-TR-41-

P, March 1989.

L. Deng, J. Offutt, and N. Li, “Empirical evaluation of the statement

deletion mutation operator,” in 6th IEEE International Conference on

Software Testing, Verification and Validation (ICST 2013), Luxembourg,

March 2013.

M. E. Delamaro, J. Offutt, and P. Ammann, “Designing deletion mu-

tation operators,” in 7th IEEE International Conference on Software

Testing, Verification and Validation (ICST 2014), Cleveland, Ohio,

March 2014.

P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical

minimal sets of mutants,” in 7th IEEE International Conference on

Software Testing, Verification and Validation (ICST 2014), Cleveland,

OH, March 2014, pp. 21-30.

(2010) JustSit. https://play.google.com/store/apps/details 7id=

com.brocktice.JustSit, last access September 2016.

(2014) MunchLife. https://play.google.com/store/apps/details?id=

info.bpace.munchlife] last access September 2016.

(2013) TippyTipper. https://code.google.com/p/tippytipper, last access

September 2016.

[16] I. Darwin, “Tipster,” 2016, https://github.com/lanDarwin/Android-

Cookbook-Examples/tree/master/Tipster, last access September 2016.

U. Praphamontripong and J. Offutt, “Finding redundancy in web mu-

tation operators,” in Twelfth Workshop on Mutation Analysis (Mutation

2017), March 2017, pp. 134-142.

P. Ammann and J. Offutt, Introduction to software testing, 2nd ed.

Cambridge University Press, 2017, iSBN 978-1107172012.

[19] J. Offutt and R. Untch, “Mutation 2000: Uniting the orthogonal,” in

Proceedings of Mutation 2000: Mutation Testing in the Twentieth and
the Twenty First Centuries, San Jose, CA, October 2000, pp. 45-55.

[20] W. E. Wong, M. E. Delamaro, J. C. Maldonado, and A. P. Mathur,

“Constrained mutation in C programs,” in Proceedings of the Sth

Brazilian Symposium on Software Engineering, Curitiba, Brazil, October

1994, pp. 439-452.

B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and

N. Gokee, “Analyzing the validity of selective mutation with dominator

mutants,” in Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, ser. FSE 2016.

New York, NY, USA: ACM, 2016, pp. 571-582.

[10]

(11]

[12]

[13]

[14]

[15]

(17]

[18]

(21]

http://www.kpcb.com/internet-trends
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
https://play.google.com/store/apps/details?id=com.brocktice.JustSit
https://play.google.com/store/apps/details?id=com.brocktice.JustSit
https://play.google.com/store/apps/details?id=info.bpace.munchlife
https://play.google.com/store/apps/details?id=info.bpace.munchlife
https://code.google.com/p/tippytipper
https://github.com/IanDarwin/Android-Cookbook-Examples/tree/master/Tipster
https://github.com/IanDarwin/Android-Cookbook-Examples/tree/master/Tipster

