
Research on Page Object Generation Approach
for Web Application Testing

Yimei Chen, Zheng Li, Ruilian Zhao and Junxia Guo∗

College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing, China

∗Corresponding: gjxia@mail.buct.edu.cn

Abstract—Test code generated by using the page object design
pattern during web testing is easy to maintain. Page clustering is
an essential stage of the page object approach. However, existing
methods only consider the DOM structure in page clustering,
which leads to inaccuracy when generating page objects. A
state with the same DOM structure may result in an entirely
different migration. The method of considering only the DOM
structure cannot accurately generate page object classes. In
order to improve the accuracy of page object generation, this
paper not only considers DOM structure information but also
considers CSS styles and the attributes of DOM elements in
page clustering. Based on the experimental evaluation results,
our method can automatically generate page objects that cover
most of the application functions, which is more effective for the
creation and maintenance of web test cases.

Index Terms—Web applications, Automated testing, Page ob-
ject.

I. INTRODUCTION

As an essential stage of software development, software
testing can be described as the process of identifying the cor-
rectness of programs. The primary purpose is to find possible
errors in programs [1]. The cost of software testing is about
50% of entire software development cycle [2]. With the faster
step of business, the software development cycle also becomes
shorten and shorten. As a result, software testing needs to
be finished in limited time, especially for quick-updated web
applications. Because of cost constraints, software companies
want to test their software as quickly as possible. Thus,
research on automated testing has received significant attention
in both industry and academia. Automated testing can run
frequently, shorten the test cycle, quickly respond to changing
requirements, and make the development process more agile.

The existing end-to-end automated test tools have a similar
problem of maintaining test scripts during software evolution.
Although those test tools can make testing easier, they can-
not help testers write well-structured test scripts. To adapt
to changing web applications, testers need to change test
suites, which represents a considerable workload. Thus, the
techniques for both test suite generation and maintenance are
needed.

The page object pattern [3] is an effective mode on enhanc-
ing test suite maintenance and can reduce code duplication. A
page object is an object-oriented class that acts as an interface

DOI reference number: 10.18293/SEKE2019-010

to the web page of applications under test. Individually, all
element attributes and element operations of a page object
are encapsulated in a class. Whenever testers need to interact
with elements of the user interface, the test case will use
the approaches of the page object class. The test code is
separated from the page elements and its methods of operation,
in order to reduce the impact of changes in page elements
on the test code. If page elements are changed, we only
need to modify the code of the corresponding page object
(the corresponding class) without modifying the test code.
Therefore, it is beneficial to adopt the page object mode in
maintaining web test suites.

However, the existing tools based on page object mode
have their limitations. Only the DOM state is used for page
clustering, which leads to the inaccuracy of generating page
objects. Two web pages with the same DOM structure can
show different visual effects and trigger completely different
events, which should be divided into two page objects. To ad-
dress this problem, we propose an approach for automatically
generating page objects for web application testing, which is
more accurate and efficient.

In this paper, we conduct in-depth research on page object
generation and use it in web testing. Its main contributions are
listed as follows.

1. Oriented to the automated generation of page object, we
theoretically analyze influence factors related to page
clustering. Based on the consideration of the DOM
structure of two pages, we also consider CSS styles and
attributes of DOM elements. According to the multiple
influence factors, we propose a two-stage clustering al-
gorithm.

2. We implement a prototype tool for automatically gen-
erating test cases for web applications, which combines
multiple influence factors we propose in page clustering.
In this way, we effectively solve the problems of repeated
inaccurate testing in the automated testing process and
improve the efficiency of the test.

3. We do a series of experiments with several kinds of web
applications to evaluate the approach of this paper.

The organization of this paper is as follows. Section II
presents the motivation. Section III introduces our approach,
theoretically analyzing influence factors on page clustering and
also proposes a clustering algorithm of multiple influence fac-

Fig. 1. A simple DOM tree of pageA.

Fig. 2. A simple DOM tree of pageB.

tors. Section IV presents the experimental results to assess the
effectiveness of our approach and its limitations. The relevant
research is presented in Section V. Section VI concludes and
presents the future works.

II. MOTIVATION

Generally, generating page objects starts from a state-based
model (graph) of the web application. The model consists of
nodes and edges, where nodes are dynamic DOM states of
web pages and edges are attribute-based transitions between
nodes. The information of nodes and edges can be crawled
from the web application. Then, the similar web pages are
grouped into an abstract representation by the page clustering
algorithm. Consequently, the related interactions between the
web pages may change according to the clustering results.
Finally, a set of page objects is generated for the abstract web
pages and their interaction.

From the above analysis, we can find that the accuracy
of page clustering is a crucial aspect when generating page
objects. Page clustering relies on the similarity between web
pages. However, the existing studies focus on structural fea-
tures only, such as tag frequency, URL, DOM elements and so
on, ignoring CSS styles and the attributes of DOM elements,
to measure the similarity between web pages. This leads to
the inaccuracy of page clustering and page object generation.

As an example, assume that two web pages with the same
DOM structure can show different visual effects and trigger
completely different events, which should be grouped into
two page objects. However, the existing tools which only
use the DOM structure information for clustering web pages
will classify these two pages into one category, causing the
inaccuracy of page objects. For instance, as shown in the
Fig.1 and Fig.2, different attribute(i.e. id) values are set to
the <div> tags with the same DOM structure. Meanwhile,
different attribute handlers button1 and button2 are set to

Fig. 3. An overview of the approach.

different ids. Even if their tags and structures are identical,
pageA and pageB represent different states, and they should
be divided into two page objects.

For measuring the similarity between web pages, the fea-
tures which are using in existing approaches are insufficient.
To solve this problem, we conduct an in-depth analysis of
page information and raise a novel set of features considering
the structure, CSS styles and attributes of pages, as well as
the corresponding similarity measurement to distinguish pages
with the same DOM structures but different functions.

III. OUR APPROACH

A. Approach Overview

The overview of our approach is shown in Fig.3. This paper
design an automated testing framework which has five main
steps. In the first step, by using a specific crawler, we can
simulate user actions to get information. Then, we theoretically
analyze factors that affect page clustering, including DOM
structures, CSS styles and attributes of DOM elements. In this
step, we get their respective characteristic values. In step three,
according to the two-stages clustering algorithm mentioned in
this article, web pages are clustered. Next, page objects can
be generated for every clustered page. Finally, test cases can
be generated by calling page elements in corresponding page
object classes.

B. influence factors related to page clustering

1) influence factors of DOM structure: DOM is a neutral
interface between platform and language that allows programs
or scripts to dynamically access content, styles and structure
of updated documents [4]. The DOM structure represents the
hierarchical structure of a web page and is very important for
quantifying the similarity degree of web pages. In this paper,
we use tree edit distance (TED) [5] to calculate the similarity
of DOM. The Tree Edit Distance is the minimum number of
tree editing operations that convert tree T to tree T’.

2) influence factors of CSS styles: In web applications,
HTML tags not only display information about the structure
and content of the page but also show some information about
performance. Cascading Style Sheets (CSS) define how HTML

elements are displayed. Web developers nowadays put the
information not only in the HTML tag hierarchy but also in
the style sheets. CSS styles of web pages are also important
information for page clustering.

In CSS, each style is usually named by a class value. The
HTML elements in a web page are rendered by referring to the
class values. The HTML elements with the same class value
have the same style. Therefore, we consider using information
on class attributes as a kind of assist for page clustering when
generating page objects. This may avoid the misclustering
case where the DOM structure of two pages is the same, but
different CSS styles are used, which should not be classified
into one category.

The process of building a style matrix between two pages
is as follows. Firstly, we parse the HTML document of the
web page and get a collection of all class values used in this
page. We can record the class value information of the two web
pages into two sets A and B. Then we can use Jaccard distance
to calculate the distance between the class value matrix of two
pages. The calculation method is listed in Equation 1.

Dj (A,B) = 1− J (A,B) =
A4B

|A|+ |B| − |A ∩B|
(1)

When A = B, Dj(A,B) = 0. The smaller the value, the
more similar the two pages are. We use the calculation result
of Jaccard distance as the style matrix values. According to the
above steps, the style matrix values of any two pages can be
respectively calculated and stored in the corresponding vectors.

3) influence factors of the attributes of DOM elements: If
the structure of the two pages is the same, but the attributes
of DOM elements bound on the nodes are different, different
functions will be triggered. So the attributes of DOM elements
may be helpful in clustering. HTML pages contain different
HTML elements which may have different attributes and
different functions. If all the attributes are taken into account,
it will not only significantly increase the complexity of the
method, but also reduce the accuracy of comparison, for
example, the src attributes of nodes.

The id value in a web page is a kind of unique identifier for
a DOM node. Usually, scripting languages use id as a tag to
find the node where id is located. So id value is significant for
migration between states. We can distinguish different events
bound to a node by id. Therefore, we consider that id value
is a useful attribute in clustering and state migration.

We use Jaccard distance of id values to construct an
attribute-based matrix between two pages. We get a collection
of all the id values of a web page and use Equation 1 to
calculate the id-distance of two web pages.

4) Using tag filter to reduce the DOM state: There are a
large number of tags in HTML pages. Different tags have
different effects. Not all tags in the HTML document are
helpful in page clustering. We propose a tag filter method to
reduce the pending tags in the HTML document, which focus
on the effective tags and improves the usability and accuracy
of the discovered tags. So that in page clustering, tag filter

can remove some interference, which can improve accuracy
and speed.

In HTML pages, tags like <head>, <style>, <script>
and <link> contain data that is not displayed to the user as
content, which is a factor in clustering with DOM structures.
In theory, by removing these tags that are not used for structure
analysis, not only will the DOM structure will become smaller
and simplified, but also the consumption time will be reduced.
DOM is the foundation of web application display. The more
accurately the page structure is analyzed, the more completely
its functions are understood. Based on the DOM structure, tag
filter optimizes the clustering approach and indirectly improves
the accuracy of subsequent operations.

C. A two-stages clustering algorithm using multiple influence
factors

The factors affecting page clustering mentioned above have
their pros and cons. They have different effects on different
types of websites. If we only use one of them to measure
all types of web pages, there will be inaccurate classification
problems that affect the accuracy of page object generation.

Algorithm 1 A two-stages clustering algorithm using multiple
influence factors
Input: HTML pages Pn crawled by crawler
Output: A set of clustering results Sj of HTML pages

1: Get P ′
n by using tag filter on Pn

2: Calculate DOM tree edit distance matrix MDOM of P ′
n

3: Generate Si using hierarchical clustering on MDOM

4: n = number of crawled HTML pages in P ′
n

5: i = number of clustering results in Si

6: j = number of clustering results in Sj

7: for all (s1, s2, ..., si) ∈ Si do
8: if Consider CSS styles then
9: Get class values sets SCSS of P ′

n

10: Calculate MCSS of SCSS based on Equation 1
11: Generate Sj using hierarchical clustering on MCSS

12: return Sj

13: else if Consider attributes then
14: Get id values sets Sid of P ′

n

15: Calculate Mid of Sid based on Equation 1
16: Generate Sj using hierarchical clustering on Mid

17: return Sj

18: else if Consider CSS styles and attributes then
19: Calculate MCid based on Equation 2
20: Calculate MCid based on Equation 1
21: Generate Sj using hierarchical clustering on Mid

22: return Sj

23: else
24: return Si

25: end if
26: end for

Therefore, we propose a two-stage clustering algorithm
using multiple influence factors as shown in Algorithm 1.
We use tag filter on the pages crawled for preprocessing

TABLE I
TEST SUBJECTS.

Application states URLs edges DOM length
Aminer 12 4 17 58.714 kB
Termonline 57 3 56 26.194 kB
Musicbible 27 7 42 185.73 kB
BUCT 13 5 12 46.917 kB
DBLP 8 8 14 31.698 kB
CBA 17 17 51 31.156 kB
Chinacoop 55 49 108 18.26 kB
Xinxishibao 49 15 48 196.542 kB
Wanshifu 35 27 79 49.965 kB

to simplify the DOM structure. In the first stage, we use
hierarchical clustering to cluster pages based on the DOM
tree edit distance matrix of two pages. According to the
clustering results of the first stage, we re-cluster the pages that
are grouped into the same category. In the second stage, we
consider different influence factors for clustering, CSS style
and id attribute. Finally, the clustering results are returned
according to different factors. This algorithm can correctly
classify most different types of websites with better accuracy.

For any two web pages obtained by the crawler, the matrix
MCSS based on the influence factor of CSS styles can be
obtained by calculating Jaccard distance of class value sets
based on Equation 1 and the attribute matrix Mid can be
gotten by computing Jaccard distance of id value sets. The final
matrix value MCid of multiple influence factors according to
a certain weight is calculated using Equation 2.

MCid = ω ×MCSS + (1− ω)×Mid (2)

ω and (1−ω) respectively represent the weight of the matrix
value of CSS styles and the attributes of DOM ids. Setting rea-
sonable weights in the final calculation is necessary. In order to
determine the value of the above two weight parameters, this
paper performs parameter adjustment experiments on several
web applications.

IV. CASE STUDIES

In order to study the effectiveness of page object generation
approach proposed in this paper, we selected thirty web
applications in six fields as test objects, which contains the
fields of information search, arts, portals, sports, governments
and life services. Due to the limited space, we chose one or
two of each category for display.In this section we list the
result of nine web applications, including Aminer, Termonline,
Musicbible, BUCT, DBLP, CBA, Chinacoop, Xinxishibao and
Wanshifu. Then we use a two-stage clustering algorithm using
multiple influence factors on these applications and analyze its
impact on the accuracy of page object generation.

A. Test subjects

Table I gives the information about the nine experimental
objects, including each application’s name, the number of
states, the number of visited URLs, the number of edges and
the average length of the DOM.

TABLE II
COMPARISONS OF EIGENVALUES OF USING TAG FILTER OR NOT.

HTML Tag Fliter The Value of Eigenvector

index N 0,731,0,697,719,734,742,772
Y 0,727,0,693,715,730,738,766

state6 N 731,0,731,151,79,65,80,1195
Y 727,0,727,151,79,65,80,1184

state14 N 697,151,697,0,128,145,147,1151
Y 693,151,693,0,128,145,147,1140

state23 N 772,1195,772,1151,1183,1192,1211,0
Y 766,1184,766,1140,1172,1181,1200,0

Fig. 4. Comparison of time consumption (in ms) in generating DOM-based
feature matrix with or without tag filter.

B. Experimental results

1) Research on the effectiveness of tag filter on DOM states
reduction: We compare page objects generated by using tag
filter or not. We find that the page states generated before and
after tag filter are the same.

Table II is the data of feature vector based on the DOM
tree edit distance extracted from test subject DBLP. The first
column shows the labels instead of different HTML pages. The
second column shows whether tag filter is used to reduce DOM
states. The remaining columns are the experimental value of
the feature vector.

In Table II, the size of the number represents the degree of
difference between DOMs. By observing experimental data,
we find that tag filter can simplify DOM structure and make
it more similarity.

Fig.4 shows a comparison of the time consumption of
generating a DOM-based feature matrix using tag filter or not.
It shows that the times using the tag filter are shorter.

Therefore, We can say that using tag filter will not only
produce more reasonable page objects but also reduce time
consumption. So we use tag filter to simplify DOM structure
before generating a feature matrix.

2) Research on the effectiveness of two-stages clustering
algorithm using multiple influence factors and weight setting:
We compare generated page objects with different influence
factors for test subjects and manually analyze page objects
generated of each web application. The analysis results are
used as criteria for judging the effects of each influence factor.

TABLE III
COMPARISON OF THE EFFECTS OF VARIOUS INFLUENCE FACTORS.

Application DOM DOM+CSS DOM+ID
Aminer 1.52% 0.00% 0.00%
Termonline 0.88% 0.88% 0.00%
Musicbible 6.55% 6.55% 5.13%
BUCT 12.82% 0.00% 12.82%
DBLP 14.29% 0.00% 14.29%
CBA 13.97% 6.62% 8.82%
Chinacoop 14.41% 0.00% 5.39%
Epaperxxsb 0.00% 1.70% 1.70%
Wanshifu 2.52% 2.18% 1.01%
total 66.95% 17.93% 49.15%

Table III shows the result of the two-stage clustering al-
gorithm proposed in this paper with the percentage of the
mis-classified page combination number vs. the total page
combination number. The first column is web applications
under test. Second column shows the results that only using the
DOM structure for page clustering. The third column shows
the results that consider the DOM structure and CSS style for
page clustering. The fourth column shows the results using
DOM structure and attribute influence factors. The last line is
the sum of the error rates for each method on all test subjects.

Through the data in Table III, we can find that for the
application Aminer, the result of page objects generated when
considering CSS style and DOM attribute for page clustering
is the same as the result of the manual analysis. Moreover,
they are both better than only considering the DOM structure.
For the application Termonline, Musicbible and Wanshifu, the
results that use DOM attribute have the lowest error rate
when generating page objects. For the application BUCT,
DBLP, CBA and Chinacoop, page objects generated by DOM
structure and CSS styles have the lowest error rate. In addition
to application Epaperxxsb, results of CSS-assisted DOM or
ID-assisted DOM are better than using only DOM.

Therefore, we conclude that the generating accuracy of page
object generated using our clustering algorithm is better than
the method that only considering the DOM structure. However,
the results of DOM structure with CSS styles and DOM
structure with attribute have different performance for different
applications. Therefore, we also do experiment that combine
those two influence factors with different weights to achieve
the best classification accuracy.

To set reasonable weights for CSS styles and DOM at-
tributes in the final calculation, we did experimental research.
In addition, we need to find the suitable condition for starting
the second stage. If the result of first stage shows that the
two pages are quite different, the second stage need not to be
started. Therefore, We set the trigger threshold of the second
stage in page clustering to be 0.5. When the distance between
two pages exceeds the threshold in first stage, the clustering
algorithm will start the second stage’s processing.

The weights of the CSS style and DOM attribute values are
set based on Equation 2. Then we raise the threshold of starting
the second stage and adjust the weight of two influence factors.
Through manual analysis, we get a reasonable threshold and

TABLE IV
COMPARISON OF EFFECTS OF DIFFERENT WEIGHTS.

Threshold ω=0.2 ω=0.4 ω=0.6 ω=0.8
0.5 6.55% 6.55% 6.55% 6.55%
0.6 6.55% 6.55% 6.55% 6.55%
0.7 6.55% 6.55% 6.55% 6.55%
0.8 6.55% 6.55% 6.55% 6.55%
0.9 6.55% 6.55% 6.55% 3.13%

weight set. The result of the manual analysis is used in our
experiments.

The experimental results are shown in Table IV. Here we
show the result of test subject Musicbible. The first column is
the threshold of starting the second stage in page clustering.
It is incremented from 0.5 to 0.9 to determine which weight
has the best effect. The lines show the weight of CSS style
influence factors based on Equation 2. The numbers in the
table indicate the pages that are the percentage of the mis-
classified page.

When the threshold of starting second stage is 0.9 and the
respective weights of MCSS and Mid are 0.8 and 0.2, the
result of generating page object is most similar to the result
of manual judgment results. Therefore, the best effect of two-
stages clustering algorithm using multiple influence factors is
to take 0.9 as the threshold of starting the second stage in page
clustering, with the weight of o.8 for MCSS and 0.2 for Mid.

V. RELATED WORKS

There are a number of testing approaches for web applica-
tions. Some of those approaches are suitable for the early days
of Web applications, while others are more suitable for solving
modern web technologies, such as AJAX and node.js [6], [7].
Some technologies are based on service-oriented framework,
for example research [8]. Some use web page information
extraction techniques. As a commonly used approach, the
DOM similarity is used to judge the location of the required
information, and the location information can be extracted
directly without being disturbed by the noise information [9].

Web applications are different from traditional application
software. web applications use BS structures and communicate
with servers through browsers. However, local applications can
run off the network. The difference is that web applications
can only be run in various forms of browsers. In the traditional
test [10], the web test is divided into two different test forms:
black box and white box. Researchers use the corresponding
models, such as control flow graphs or navigation maps, to
conduct web application system testing studies. For example,
Arcuri A [11] proposes a automated white-box testing method,
in which test cases are generated automatically using evo-
lutionary algorithms. Tests will be rewarded based on code
coverage and fault finding metrics. Binkley D proposed a
functional road map for testing web applications [12]. Liu X
combined statement-based fault classification with spectrum-
based software fault location in order to improve the accuracy
of fault location and provide more possible fault information

for programmers [13]. In the research of Milani and Mirza-
aghaei [14], by mining the human minds contained in the
manually written test cases, they generate test cases for those
points that are not found in the program under test. However,
when the same function has multiple possible outcomes, a
considerable amount of redundant test cases are generated. In
the research of Yu Bing [15], a method based on a page object
model for automatically generating web application testing is
proposed. In this approach, the same function has multiple
possible results, resulting in a significant probability that the
generated page object is repeated, and finally, a redundant test
case is generated.

When facing massive data information, it is possible to ob-
tain incomplete or irrelevant information even through search
engines, but with the development of web data mining, the
problem is alleviated [16], [17]. Web data mining analyzes
web page content to measure the importance of one page.
Many algorithms have been proposed to extract content using
the DOM tree. For example, in the method proposed in the
research of Elyasov A [18], the DOM of the page is analyzed
as an input to propose a testing framework of Javascript
evolutionary. In the method proposed by Pagi V B [19], by
using the embedded semantic tree kernel they can extract
opinion content from web pages. In order to address repairing
Internationalization Presentation Failures problems in web
pages, Mahajan S [20] uses clustering to group stylistically
similar elements in a page. It then performs a guided search
to find suitable CSS fixes for the identified clusters.

Web pages contain a considerable amount of content that
is not related to the web page theme. When acquiring infor-
mation, this irrelevant information will affect efficiency and
accuracy. It is often necessary to do some preprocessing on
the web page. Uma [21] proposes an approach that cleans
up and displays important information from web pages in
standard format by eliminating noise and using unsupervised
technology.

VI. CONCLUSIONS AND FUTURE WORKS

The existing generated page object tools only consider the
DOM structure as the influence factor, which causes incorrect
classification. In order to solve this problem, this paper the-
oretically analyzes the influence factors, which considers not
only DOM structure, but also CSS styles and the attributes of
DOM elements, and uses tag filter to simplify DOM structure.
We propose a two-stage clustering algorithm using multiple
influence factors when generating page objects. Therefore, the
problem of incorrect classification of page objects is opti-
mized. Moreover, we implement a prototype tool to automat-
ically generate test cases for web applications to improve test
efficiency based on page object. With experimental research,
we find a suitable weight set for influence factors and threshold
and verify the validity of our approach.

In future, we would like to analyze more factors. For
example the type of events in client side scripts, which can
handle different triggerable events. Moreover, in order to get
more available information, we may use machine learning to

determine whether state and function are related. Besides, we
will extend tested objects into other types of applications.

ACKNOWLEDGMENT

The work described in this paper is supported by the
National Natural Science Foundation of China under Grant
No.61702029, No.61672085 and No.61872026.

REFERENCES

[1] Offutt J, Ammann P.: Introduction to Software Testing. Cambridge
University Press (2008)

[2] DENG Zhidan, YANG Haiyan, WU Ji.: Test data generation and
selection approach for Web application based on constraint-solving.
Computer Engineering and Applications 52(18), 214–221(2016)

[3] PageObjects, http://code.google.com/p/selenium/wiki/PageObjects. Last
accessed 13 Mar 2015

[4] W3C, https://www.w3.org/DOM/. Last accessed 1 Jun 2019
[5] Stefan Schwarz, Mateusz Pawlik, Nikolaus Augsten.: A New Perspective

on the Tree Edit Distance. In: International Conference on Similar-
ity Search and Applications 2017, LNCS, vol. 10609, pp. 156–170.
Springer, Cham (2017).

[6] Serdar Dogana, Aysu Betin-Cana, Vahid Garousia.: Web application
testing: A systematic literature review. Journal of Systems and Software
91(1),174–201(2014)

[7] Wang Lina, Li Huai, Zhao Lei.: Ajax Web automatic testing model based
on simulation of users. Journal of Huazhong University of Science and
Technology (2016)

[8] Torsel A M.: A Testing Tool for Web Applications Using a Domain-
Specific Modelling Language and the NuSMV Model Checker. In: Pro-
ceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, pp. 383–390.(2013)

[9] Pan Xinyu, Chen Changfu, Liu Rong, Wang Meiqin.: Content extraction
based on the similarity of the Web pages’ DOM tree nodes path.
Microcomputer and its Applications 35(19), 74–77(2016)

[10] Myers G J, Sandler C, Badgett T.: The Art of Software Testing. 2nd
edn.(2004)

[11] Arcuri A.: RESTful API Automated Test Case Generation. ACM Trans-
actions on Software Engineering and Methodology (2019)

[12] Binkley D, Ceccato M, Harman M.: Tool-Supported Refactoring of
Existing Object-Oriented Code into Aspects. IEEE Transactions on
Software Engineering 32(9), 698–717(2006)

[13] Liu X, Liu Y, Li Z.: Fault Classification Oriented Spectrum Based Fault
Localization. Computer Software and Applications Conference. IEEE
(2017)

[14] MilaniFard A, Mirzaaghaei M, Mesbah A.: Leveraging existing tests
in automated test generation for web applications. In: ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2014, pp. 67–78.(2014)

[15] Yu B, Ma L, Zhang C.: Incremental Web Application Testing Using
Page Object. In: Third IEEE Workshop on Hot Topics in Web Systems
and Technologies. IEEE Computer Society, 2015, pp. 1–6.(2015)

[16] ZHANG Nai-Zhou, CAO Wei, LI Shi-Jun.: A Method Based on Node
Density Segmentation and Label Propagation for Mining Web Page.
Chinese Journal of Computers 38(2), 349–364(2015)

[17] HUANG Yanjiao, WU Qin, LIANG Jiuzhen.: Boosted constrained con-
ditional random fields for Web object information extraction. Computer
Engineering and Applications 51(23), 143–148(2015)

[18] Elyasov A, Prasetya I S W B, Hage J.: Search-Based Test Data Genera-
tion for JavaScript Functions that Interact with the DOM. In: Memphis,
U.S.A, proceedings of the, IEEE 29th International Symposium on
Software Reliability Engineering.(2018)

[19] Pagi V B , Wadawadagi R S.: Opinion Content Extraction from Web
Pages Using Embedded Semantic Term Tree Kernels. International
Conference on Computational Intelligence and Data Engineering, pp.
345–358(2018)

[20] Mahajan S, Alameer A, Mcminn P.: Automated Repair of International-
ization Presentation Failures in Web Pages Using Style Similarity Clus-
tering and Search-Based Techniques. In: 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST).
IEEE Computer Society.(2018)

[21] Uma R, Latha B.: Noise elimination from web pages for efficacious
information retrieval. Cluster Computing, pp. 1-20(2018)

