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Abstract—Software architecture design plays a vital role in
software development, as it gives an overview of how the software
system should be constructed and executed at runtime. The
verification of software architecture design is hence important
but it is an error-prone task that heavily relies on knowledge
and experience of the software architect, especially for a large
software system that its behaviour is complex. Automated verifi-
cation can be a solution to this problem, however, the specification
language must be expressive enough to describe the behaviour
of different design entities. This paper presents an enhancement
of an architecture description language supported by PAT. The
enhancement aims to improve the expressiveness of the language,
in order to support the automated behaviour verification of
software architecture design. With this enhancement, different
behaviour of specific component and connector can be thoroughly
checked and traced. The implementation of this enhancement
is presented to demonstrate how the standard model checking
engine such as PAT can be extended to support an architecture
description language. We evaluated our approach with a case
study and the result is presented.

Index Terms—Software Architecture, Architecture Description
Language, Model Checking, Linear Temporal Logic

I. INTRODUCTION

Software architecture design gives an overview of how the
software system is implemented and works. If the software
architecture design is made incorrectly, it can cause the project
to fail or delay due to design re-correction, therefore the verifi-
cation is a significant task. However, the software architecture
designs are usually represented by informal notations, such
as graphical diagram and text. The design interpretation can
hence be inconsistent and the verification process is an error-
prone and time consuming task, even to those with extensive
experience and knowledge. If the software architecture design
can be formally defined, the verification task can be automated.
Therefore, applying the formal methods to the software archi-
tecture design would be a useful approach to this problem.

Many architecture description languages (ADL) have been
proposed to formally define the software architecture design
model such as [1], [2], [3], and [4]. With the formal model
in ADL, different properties can be defined and automatically
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verified with the model checker. Allen and Garlan [1] proposed
Wright, an ADL that allows connections in software architec-
ture design to be formally defined in communicating sequential
process (CSP). The formal format of design model allows
to check the architectural compatibility among connections.
However, the behavioural property definition and verification
had not been completely addressed so there are number of
works that aim to fulfil this. Darwin [5] was proposed to allow
behavioural properties to be defined in the linear temporal
logic (LTL) and use LTSA [2] as a model checker to verify
them. Defining and verifying behaviours in the evolving soft-
ware system is a challenge. Oquendo [3] presented π-Method
with an ADL based on π-calculus. The ADL for π-Method
helps to formally define evolvable software system in both
structural and behavioural view. In addition, the refinement
model can be defined to check and preserve the behavioural
properties.

Some works have applied process algebra to formalize
specific behaviour in the software system because of its
expressiveness in describing system behaviour. Aldini et al. [6]
presented a guideline that includes a principle of formalizing
system behaviour into process algebra. The manual formal-
ization from the design model to ADL has been an obstacle
to making it widely used by the software engineers, due to
the fact that the majority of them do not have background
knowledge in the formal methods and the verification output
from model checker can be difficult to understand. Therefore,
the degree of formality needs to be balanced with the practi-
cality. Some approaches, such as Bose et al. [7], Baresi et al.
[8] and CHARMY [4], hence provide a feature that translates
the input model in graphical notation into formal language
that can be automatically checked. While, some approaches,
such as Arcade [9], aim to make the verification output from
the model checker more readable. The graphical abstraction
may promote the practicality and understandability of using
formal ADL, but the ambiguity might occur from the lack of
complete semantic mapping between the graphical input and
the model checking input. In addition, most of the existing
approaches use standard model checking engines that is not
designed with the architecture design concept. For example,
Wright uses FDR as a model checker, while Darwin and
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CHARMY uses LSTA and SPIN [10] respectively. As a result,
the constructed state model is usually not optimized in term
of understandability and scalability [11].

This work aims to enhance the expressiveness of Wright#
[12], an architecture description language that is supported by
PAT [13]. Wright# is an extension of Wright with the support
of architecture styles reusing. This enhancement provides an
expressive way to describe the execution of software system
through system, component and connector specification. The
overall approach can be found in Figure 1, which shows the
specification that consists of four major parts. The connector
can be specified according to the architecture styles. The
component specification includes components involved in the
system under design. In system configuration, the connector
instances are created and attached to the component before
we define how the system is executed through the process
that initiates different components. The assertion is where
the number of properties are defined for checking specific
behaviour in the system. Deadlock freeness, a standard PAT
feature, can also be used to verify the software architecture
design. As the original Wright# produces a vague event labels
that are difficult to trace. Therefore, the event labelling is
optimized to clearly represent specific events in the connectors
and components. As a result, the LTL properties can be defined
to check the specific behaviours of design entities and the
verification output is easier to trace back. The PAT extension
module is developed as a graphical interface tool to support
Wright# and its enhancement. In addition, we demonstrate
the expressiveness of the design specification and property
definition with a software architecture design of e-commerce
software system.

The remainder of this paper is organized as follows. Section
2 explains the formalization of behaviour specification in the
software architecture design. Section 3 presents the implemen-
tation of tool and how we develop a module in PAT framework
to support Wright#. We demonstrate our approach with an e-
commerce case study in Section 4. Section 5 concludes this
paper and addresses the directions of future work.

II. FORMALIZATION OF ARCHITECTURAL DESIGN

In this section, we present the formalization of behaviour
specification of software architecture design in Wright#.
Wright# notation aims to define software architecture design

in component and connector view. CSP, a process algebra
notation, is used to formally describe the interactive behaviours
of component and connector. We extend the PAT tool to
support this ADL and transform it into native CSP that forms
Labelled Transition System (LTS). With LTS, the desired
behaviours of software system can be automatically checked
through LTL, as well as the deadlock situation.

A. Formal Modelling
Wright# is an ADL that is inspired by Wright with four ba-

sic design entities namely the component, connector, port and
role. The component represents a computational unit, while
the connector represents linkage between the components. The
connector can includes one or more roles representing how the
communication works. The component contains a number of
ports that can be attached to one or more roles defined by
different connectors.

There are three parts of design model to be described
in ADL namely connector definition, component definition
and system configuration. Each definition of connector is
corresponding to different type of communication according to
the architecture style. The component are defined to represent
actual component and port within the software system under
design. The system configuration defines how component and
connector are attached, as well as the execution process. These
definition contains defined processes that are based on CSP.
Table I shows the syntax of process expression that can be
used to describe the processes within the software architecture
design.

TABLE I
PROCESS EXPRESSION SYNTAX

e→ P Event prefixing
ch!p→ P Channel output
ch?p→ P Channel input
P ‖ Q Parallel process
P ||| Q Interleaving process
P < ? > Q Coupling process
Stop deadlock stop
Skip terminate successfully

An event represents an abstract observation of a software
system. It may refer to certain system state at a given time.
Event prefixing hence represent a circumstance when an event
e occurs then process P is executed next. Channel output and
input are used to send and receive data from its executing
environment respectively. Let ch be a channel and p is data
to be sent or received; P is a process to be executed next. A
pair of processes can be defined as parallel, interleaving and
coupling. The coupling operator does not exist in native CSP
or CSP# but it is added to the syntax to represent coupling
process between components. Let P and Q be a process and
P < ? > Q. When the process P is triggered, it contains a
sequence of event that an event sequentially calls the process
Q to execute and return back to where it is called on process P.
In order to define coupling, process P must contain an event
process, which is when the coupling process Q is called to
execute.



1) Connector Definition: The connectors are firstly defined
to manifest how roles interact together. The processes for role
are defined with the sequence of events. The channel is used
to represent communication between different roles, which
results in transition between events. Below is a sample code
that conveys the communication for the client-server structure.
The channel req is used to make a request from the client to
the server and channel res is used to return response message
from the server to the client.

connector CSConnector{
role client(j) = request→ req!j→ res?j

→ process→ client(j);
role server() = req?j→ invoke

→ process→ res!j→ server(); }

The connector for publisher-subscriber styles can be defined
as shown below, where a channel pub is used to broadcast data
from the publisher to the subscriber.

connector PSConnector{
role publisher(j) = process→ pub!j→ Skip;
role subscriber() = pub?j→ process→ subscriber(); }

2) Component Definition: The component definition con-
tains a set of port definition. Each port has a process defined as
the sequence of event that the port performs internally within
the component. The script below shows two sample component
namely SPClient and SPServer. The SPClient component has
a test port defined and the SPServer has run port defined.

component SPClient {
port test() = precheck→ output→ test(); }

component SPServer {
port run() = invoke→ execution→ run(); }

3) System Configuration: The system configuration con-
tains details of how components interact among each other
and can be defined as follow. Firstly, the instance of connector
needs to be created with the declare statement based on
a defined connector. Secondly, the ports of connector are
attached to one of more roles of connector instances using
attach statement. If more than one roles are attached, a process
expression composed of multiple role and process operator
can be defined. Lastly, the execute statement declares how the
system are executed with a process expression.

system SampleCS {
declare cslink = CSConnector;
attach SPClient.test() = cslink.client();
attach SPServer.run() = cslink.server();
execute SPServer.run() ‖ SPClient.test(); }

Careful readers may notice an event process defined at the
role processes. This event triggers an execution of a process
defined on the attached port. According to the sample system
configuration shown above, the LTS is illustrated in Figure 2,
which the events of port is shown in italic.

The process event also serves as the point of execution
when the coupling process is defined. The coupling process
may occur in many situation. For example, the multi-tier
architecture that a tier can accept a request and consequently
make a request to the upper tier. Another example is in
Service-oriented architecture when a service is invoked and
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calls another service. Below is a sample of attached coupling
role processes. The run port of SPServer is attached to a
coupling of two roles from different client-server connectors
namely cslink and dlnk, which calls the component SPServer
and DBServer respectively where DBServer is a component.
In this case, the role processes are nested within one another
as LTS shown in Figure 3. This coupling feature eases the
complexity of defining the coupling process in native CSP.

attach SPServer.run() = cslink.server() < ∗ > dlnk.client();
attach DBServer.run() = dlnk.server();

B. Behaviour Verification

After the software architecture design model is defined with
ADL, different assertions representing the query about system
behaviours can be defined. PAT supports a number of different
assertion checking including linear temporal properties and
deadlock freeness.



1) Deadlock Freeness: Deadlock is a situation when the
software system can not progress further towards completion;
so that the entire system halts and waits indefinitely. A well
known scenario is when components wait for the mutual
exclusive resource. In the software system, deadlock occurs
when components call each other as circle, so the port that
initializes the process loops back to itself. More concrete
examples will be provided in the case study section. With the
sample model explained in the previous section, a deadlock
can be checked against a defined system using the deadlockfree
statement as shown below.

assert SampleSystem deadlockfree;

2) Linear Temporal Properties: A full set of linear temporal
logic is supported by PAT. Therefore, operators such as �
(always), ♦ (eventually), X (next), R (release) and U (until) can
be included in the linear temporal logic defined for checking
properties. Let F be a LTL formula, the assertion syntax for
defining LTL properties is as follows.

assert SampleSystem |= F;

In order to support expressiveness of defining system be-
haviour, the property can be implicitly defined to check the
behaviour of a specific component or connector.

Let Comp be any component, Prt is port of that component
and Evt is one of the event defined in the port process. F is a
LTL formula to check the behaviour of the component:

F = [Comp.Prt.Evt] | � F | ♦ F | X F | U F | R F
Let Comp be any component, Conn be a connector, Rle be

an attached role and Evt be one of the event defined in the
role process. F is a LTL formula to check the behaviour of
connector:

F = [Comp.Conn.Rle.Evt] | � F | ♦ F | X F | U F | R F
For example, �♦SPServer.run.execution expresses a prop-

erty to check if the execution event always eventually occurs
at the SPServer component. ♦DBServer.dblink.client.request
expresses a property to check if the request event at attached
client role of DBServer component eventually occurs.

III. TOOL IMPLEMENTATION

To support editing architecture design model in ADL and
automated behaviour verification, the PAT ADL module is
developed by extending PAT framework. This module includes
parser that helps to parse the ADL code into objects represent-
ing different entities of software architecture design model.
The parser in the original PAT tool was developed using
ANTLR version 3, where different parts of parsing code in C#
are merged inside the grammar file. This style of development
is difficult to make any extension and maintenance. Therefore,
we adopt ANTLR version 4.0, where the source code of
language parsing can be separated from the grammar file.
The complete source code of PAT ADL can be found at
https://bit.ly/2Vc855I.

The overall process performed by ADL module can be
illustrated in Figure 4. The editor tool allows users to edit
ADL file according to the syntax explained in the previous
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Fig. 4. Overall Process of the ADL module

section. When the user makes a verification, the source code
in ADL is processed by the PAT ADL in the background
and return the result back to the user interface on the editor
tool. We developed a grammar file based on the CSP# and
used ANTLR to automatically generate a parser program. The
parser program helps to read a source code in ADL and the
visitor program is developed to convert different ADL state-
ments into objects representing entities such as component,
connector, system configuration, port, role, attachment and
assertion. With Specification module, ADL objects are later
automatically transformed into PAT native objects representing
the CSP processes. The ADL to CSP transformation can be
briefly explained as follows.

• One process is defined corresponding to each attached
role of a defined port.

• One process is defined to represent a defined port, which
calls the attached role process according to the expression
defined in the attach statement.

• One process is created for a defined system and call port
processes according to expression defined in the execute
statement.

For example, the sample client-server model explained
in the previous section can be transformed into native
CSP as shown below. Two channels namely cslink req and
cslink res are defined for requesting and responding mes-
sage. SPClient cslink client process is defined for the client
role of cslink, and SPClient test process is defined for the
test port. Two processes namely SPServer cslink server and
SPServer run are defined in the same way for server. The
SampleSystem process is defined to represent the main system
process. The LTS sub-module helps to model LTS according
to CSP and encapsulate the transition model. The transition
model allows Assertion sub-module to traverse according to
the depth-first search and breadth-first search algorithm, in
order to make a verification. The verification result is displayed
on the verification window of the editor tool.



channel cslink res 1;
channel cslink req 1;
SPClient cslink client(j) = (
SPClient cslink client request
→ cslink req!j→ cslink res?j
→ (SPClient cslink client result
→ (SPClient cslink client process
→ (SPClient test precheck
→ (SPClient test output→ SPClient cslink client(j))))));
SPClient test() = SPClient cslink client();
SPServer cslink server() = cslink req?j
→ (SPServer cslink server invoke
→ (SPServer cslink server process
→ (SPServer run invoke
→ (SPServer run execution
→ (SPServer cslink server return
→ cslink res!j→ SPServer cslink server())))));
SPServer run() = SPServer cslink server();
SampleSystem() = (SPServer run() ‖ SPClient test());

IV. CASE STUDY

We select a part of real-world e-commerce software system
to demonstrate and evaluate the practicality of our approach.
The software architecture design of this system is shown (as
UML component diagram) in Figure 5. The software system
allows user to browse catalogue of the products, order and
make a purchase on-line through the web store or mobile store.
When the users make a purchase, the order manager compo-
nent keeps the record of order and fetch the product from
the inventory though the inventory control component. The
inventory control automatically locates the ordering product
from the warehouse and send details to the shipping control
component. The shipping control allows packaging officer to
prepare shipping package and log the shipping package for
courier.
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Fig. 5. Component diagram for E-commmerce system

In this case study, we use the client-server and publisher-
subscriber connectors as defined in the previous section. The
model in ADL is partly shown below. The complete model
can be found at https://bit.ly/2EwJGCg. The ports are defined
according to the component diagram shown in Figure 5 along
with the port processes that simulate what the components

perform. Some port may omit the process details such as
ProductCatelogue and OrderManager component. The system
configuration of this system declares 4 client-server connector
and 1 publisher-subscriber connector. The number of attach-
ments are defined to link components together. The numbers
passing in as a parameter for role processes represent the sig-
nature of data passing between the component and connector.
The proc port of OrderManager is attached to two roles as
a coupling process: purchasing.server() and issuing.client().
This is because the order can only be processed successfully
when the inventory finished fetching the product, otherwise
the order is rejected. The purchasing.server() represents the
internal process for processing order within the OrderManager
component, while the issuing.client() requests to the service
on InventoryControl component to fetch the product. The
issue port of InventoryControl component is attached to two
roles as a parallel process. The issuing.server() represents
the internal execution of InventoryControl component, while
shipping.client() represents a request to manage the shipping
details of the ShippingControl component. The execute state-
ment defines all port processes to be executed in parallel.
The execution can be modified to focus on checking some
particular scenarios in response to the functionality of the
software system, such as when the product is ordered and
when the product catalogue is updated.

component WebStore {
port browse() = render → output → browse();
port order() = commit → email → order();
port receive() = acknowledge → display → receive(); }

component MobileStore {
port browse() = render → output → browse();
port order() = commit → email → order(); }

component WebAdmin {
port manage() = result → manage(); }

component CustomerNotifier {
port alert() = promo → send → alert(); }

component InventoryControl {
port issue() = locate → fetch → issue(); }

component ShippingControl {
port ship() = inform → log → ship(); }

...
system Shopping {

declare purchasing, issuing = CSConnector;
declare shipping, cataccessing = CSConnector;
declare newswire = PSConnector;
attach WebStore.order() = purchasing.client(99);
attach MobileStore.order() = purchasing.client(98);
attach WebStore.receive() = newswire.subscriber();
attach CustomerNotifier.alert() = newswire.publisher(77);
attach WebStore.browse() = cataccessing.client(99);
attach WebAdmin.manage() = cataccessing.client(98);
attach ProductCatelogue.access() = cataccessing.server();
attach OrderManager.proc() = purchasing.server()

< ∗ > issuing.client();
attach InventoryControl.issue() = issuing.server()

‖ shipping.client(88);
attach ShippingControl.ship() = shipping.server();
execute WebStore.order() ‖ MobileStore.order()
‖ WebStore.browse() ‖ WebAdmin.manage()
‖ ProductCatelogue.access() ‖ OrderManager.proc()
‖ InventoryControl.issue() ‖ ShippingControl.ship();



Three assertions are defined as shown below. The first
assertion helps to check if the software system design can
leads to a deadlock. If the deadlock is found, the verification
shows an invalid result with a counterexample, which gives a
sequence of events leading how deadlock can occur.

assert Shopping deadlockfree;
assert Shopping |= ♦WebStore.purchasing.client.process;
assert Shopping |= �(OrderManager.purchasing.server.process

→ ♦WebStore.order.email);

With the system configuration above, the deadlock does not
occur so it outputs a valid result. However, we can demonstrate
when deadlock occurs by changing the attachment of the
ShippingControl.ship() port to the shipping.server() < ∗ >
issuing.client(). This makes the components call each other in
a loop. The verification result can be seen in Figure 6. The
event labels identify both component, connector, role and port
that are involved in the deadlock. The second assertion makes
use of the behaviour checking on the connector. It checks if
the process event of client role is eventually triggered at the
attached purchasing connector on the WebStore component.
The third assertion combines the behaviour checking on both
the component and connector, as it checks if every time the
order is processed, the email will always be sent out to the
customer. The results of these two LTL properties are valid.
The verification statistic of these three assertions including
number of states, number of transitions, total time usage and
estimated memory usage can be found in Table II. As can
be seen from the table, the number of visited states, memory
usage and total time are relatively low.

Fig. 6. Deadlock Result from PAT

TABLE II
VERIFICATION STATISTIC

Assertion State# Transition# Time (sec) Memory
Deadlock 25 24 0.0059828 8664 KB

LTL 1 16 24 0.0105143 8696 KB
LTL 2 159 278 0.0137552 42280 KB

V. CONCLUSION

We present an enhancement to Wright# ADL that supports
the formal behaviour modelling in software architecture de-
sign. The language allows users to expressively define and
verify the behaviour of components and connectors. The
implementation of a PAT extension module to support Wright#
and our enhancement is presented, in order to demonstrate
how the standard model checker can be extended to support
an ADL. We evaluate our approach with an e-commerce

software system. Our approach can be used to clearly define
the behaviour of different components and connectors in the
design, as well as the interaction among them. The properties
can be defined in LTL assertions to represent the desired
system behaviour in response to the system functionalities.
The deadlock analysis, a standard feature in PAT can be used.
The event labels in a counterexample is informative enough to
identify involved design entities that cause invalid behaviour.
We found that the state space are relatively low but more
evaluation need to be taken to prove the scalability.

For the future work, we plan to integrate this approach
with other techniques such as ontology reasoning [14], in
order to fulfil the semantics of the architecture design in the
verification process. As the ontology representation is rich of
semantic constrains that can help to verify and maintain the
structure consistency in the design model before its behaviour
is checked. More case studies in the real world could be used
to evaluate the practicality and scalability of our approach. As
the behaviours can be formally defined, it could be interesting
to use it to detect the design smells or anti-pattern based on
the system behaviours.
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